Privacy in Federated Learning
- URL: http://arxiv.org/abs/2408.08904v1
- Date: Mon, 12 Aug 2024 18:41:58 GMT
- Title: Privacy in Federated Learning
- Authors: Jaydip Sen, Hetvi Waghela, Sneha Rakshit,
- Abstract summary: Federated Learning (FL) represents a significant advancement in distributed machine learning.
This chapter delves into the core privacy concerns within FL, including the risks of data reconstruction, model inversion attacks, and membership inference.
It examines the trade-offs between model accuracy and privacy, emphasizing the importance of balancing these factors in practical implementations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) represents a significant advancement in distributed machine learning, enabling multiple participants to collaboratively train models without sharing raw data. This decentralized approach enhances privacy by keeping data on local devices. However, FL introduces new privacy challenges, as model updates shared during training can inadvertently leak sensitive information. This chapter delves into the core privacy concerns within FL, including the risks of data reconstruction, model inversion attacks, and membership inference. It explores various privacy-preserving techniques, such as Differential Privacy (DP) and Secure Multi-Party Computation (SMPC), which are designed to mitigate these risks. The chapter also examines the trade-offs between model accuracy and privacy, emphasizing the importance of balancing these factors in practical implementations. Furthermore, it discusses the role of regulatory frameworks, such as GDPR, in shaping the privacy standards for FL. By providing a comprehensive overview of the current state of privacy in FL, this chapter aims to equip researchers and practitioners with the knowledge necessary to navigate the complexities of secure federated learning environments. The discussion highlights both the potential and limitations of existing privacy-enhancing techniques, offering insights into future research directions and the development of more robust solutions.
Related papers
- FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
Federated Learning is a privacy preserving decentralized machine learning paradigm.
Recent research has revealed that private ground truth data can be recovered through a gradient technique known as Deep Leakage.
This paper introduces the FEDLAD Framework (Federated Evaluation of Deep Leakage Attacks and Defenses), a comprehensive benchmark for evaluating Deep Leakage attacks and defenses.
arXiv Detail & Related papers (2024-11-05T11:42:26Z) - Federated Learning Privacy: Attacks, Defenses, Applications, and Policy Landscape - A Survey [27.859861825159342]
Deep learning has shown incredible potential across a vast array of tasks.
Recent concerns on privacy have further highlighted challenges for accessing such data.
Federated learning has emerged as an important privacy-preserving technology.
arXiv Detail & Related papers (2024-05-06T16:55:20Z) - State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey [0.0]
This paper examines the evolving landscape of machine learning (ML) and its profound impact across various sectors.
It focuses on the emerging field of Privacy-preserving Machine Learning (PPML)
As ML applications become increasingly integral to industries like telecommunications, financial technology, and surveillance, they raise significant privacy concerns.
arXiv Detail & Related papers (2024-02-25T17:31:06Z) - Using Decentralized Aggregation for Federated Learning with Differential
Privacy [0.32985979395737774]
Federated Learning (FL) provides some level of privacy by retaining the data at the local node.
This research deploys an experimental environment for FL with Differential Privacy (DP) using benchmark datasets.
arXiv Detail & Related papers (2023-11-27T17:02:56Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Fair Differentially Private Federated Learning Framework [0.0]
Federated learning (FL) is a distributed machine learning strategy that enables participants to collaborate and train a shared model without sharing their individual datasets.
Privacy and fairness are crucial considerations in FL.
This paper presents a framework that addresses the challenges of generating a fair global model without validation data and creating a globally private differential model.
arXiv Detail & Related papers (2023-05-23T09:58:48Z) - A Survey of Trustworthy Federated Learning with Perspectives on
Security, Robustness, and Privacy [47.89042524852868]
Federated Learning (FL) stands out as a promising solution for diverse real-world scenarios.
However, challenges around data isolation and privacy threaten the trustworthiness of FL systems.
arXiv Detail & Related papers (2023-02-21T12:52:12Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
We investigate the privacy-preserving joint edge association and power allocation problem.
The proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.
arXiv Detail & Related papers (2023-01-26T10:09:23Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
We conduct the first comprehensive survey on this topic.
Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic.
arXiv Detail & Related papers (2020-12-07T12:11:45Z) - Privacy Preservation in Federated Learning: An insightful survey from
the GDPR Perspective [10.901568085406753]
Article is dedicated to surveying on the state-of-the-art privacy techniques, which can be employed in Federated learning.
Recent research has demonstrated that retaining data and on computation in FL is not enough for privacy-guarantee.
This is because ML model parameters exchanged between parties in an FL system, which can be exploited in some privacy attacks.
arXiv Detail & Related papers (2020-11-10T21:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.