Ten Challenging Problems in Federated Foundation Models
- URL: http://arxiv.org/abs/2502.12176v1
- Date: Fri, 14 Feb 2025 04:01:15 GMT
- Title: Ten Challenging Problems in Federated Foundation Models
- Authors: Tao Fan, Hanlin Gu, Xuemei Cao, Chee Seng Chan, Qian Chen, Yiqiang Chen, Yihui Feng, Yang Gu, Jiaxiang Geng, Bing Luo, Shuoling Liu, Win Kent Ong, Chao Ren, Jiaqi Shao, Chuan Sun, Xiaoli Tang, Hong Xi Tae, Yongxin Tong, Shuyue Wei, Fan Wu, Wei Xi, Mingcong Xu, He Yang, Xin Yang, Jiangpeng Yan, Hao Yu, Han Yu, Teng Zhang, Yifei Zhang, Xiaojin Zhang, Zhenzhe Zheng, Lixin Fan, Qiang Yang,
- Abstract summary: Federated Foundation Models (FedFMs) represent a distributed learning paradigm that fuses general competences of foundation models as well as privacy-preserving capabilities of federated learning.
This paper provides a comprehensive summary of the ten challenging problems inherent in FedFMs, encompassing foundational theory, utilization of private data, continual learning, unlearning, Non-IID and graph data, bidirectional knowledge transfer, incentive mechanism design, game mechanism design, model watermarking, and efficiency.
- Score: 55.343738234307544
- License:
- Abstract: Federated Foundation Models (FedFMs) represent a distributed learning paradigm that fuses general competences of foundation models as well as privacy-preserving capabilities of federated learning. This combination allows the large foundation models and the small local domain models at the remote clients to learn from each other in a teacher-student learning setting. This paper provides a comprehensive summary of the ten challenging problems inherent in FedFMs, encompassing foundational theory, utilization of private data, continual learning, unlearning, Non-IID and graph data, bidirectional knowledge transfer, incentive mechanism design, game mechanism design, model watermarking, and efficiency. The ten challenging problems manifest in five pivotal aspects: ``Foundational Theory," which aims to establish a coherent and unifying theoretical framework for FedFMs. ``Data," addressing the difficulties in leveraging domain-specific knowledge from private data while maintaining privacy; ``Heterogeneity," examining variations in data, model, and computational resources across clients; ``Security and Privacy," focusing on defenses against malicious attacks and model theft; and ``Efficiency," highlighting the need for improvements in training, communication, and parameter efficiency. For each problem, we offer a clear mathematical definition on the objective function, analyze existing methods, and discuss the key challenges and potential solutions. This in-depth exploration aims to advance the theoretical foundations of FedFMs, guide practical implementations, and inspire future research to overcome these obstacles, thereby enabling the robust, efficient, and privacy-preserving FedFMs in various real-world applications.
Related papers
- FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
Federated Learning is a privacy preserving decentralized machine learning paradigm.
Recent research has revealed that private ground truth data can be recovered through a gradient technique known as Deep Leakage.
This paper introduces the FEDLAD Framework (Federated Evaluation of Deep Leakage Attacks and Defenses), a comprehensive benchmark for evaluating Deep Leakage attacks and defenses.
arXiv Detail & Related papers (2024-11-05T11:42:26Z) - Advances in Robust Federated Learning: Heterogeneity Considerations [25.261572089655264]
Key challenge is to efficiently train models across multiple clients with different data distributions, model structures, task objectives, computational capabilities, and communication resources.
In this paper, we first outline the basic concepts of heterogeneous federated learning.
We then summarize the research challenges in federated learning in terms of five aspects: data, model, task, device, and communication.
arXiv Detail & Related papers (2024-05-16T06:35:42Z) - Advances and Open Challenges in Federated Foundation Models [34.37509703688661]
The integration of Foundation Models (FMs) with Federated Learning (FL) presents a transformative paradigm in Artificial Intelligence (AI)
This paper provides a comprehensive survey of the emerging field of Federated Foundation Models (FedFM)
arXiv Detail & Related papers (2024-04-23T09:44:58Z) - Position Paper: Assessing Robustness, Privacy, and Fairness in Federated
Learning Integrated with Foundation Models [39.86957940261993]
Integration of Foundation Models (FMs) into Federated Learning (FL) introduces novel issues in terms of robustness, privacy, and fairness.
We analyze the trade-offs involved, uncover the threats and issues introduced by this integration, and propose a set of criteria and strategies for navigating these challenges.
arXiv Detail & Related papers (2024-02-02T19:26:00Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
Federated learning(FL) has emerged as a promising paradigm for training machine learning models in a distributed and privacy-preserving manner.
The choice of methods used for models plays a crucial role in the performance, convergence speed, communication efficiency, privacy guarantees of federated learning systems.
Our research meticulously compares, categorizes, and delineates the merits and demerits of each technique, examining their applicability across diverse FL scenarios.
arXiv Detail & Related papers (2023-10-31T23:26:58Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.
This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.
We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Selective Knowledge Sharing for Privacy-Preserving Federated
Distillation without A Good Teacher [52.2926020848095]
Federated learning is vulnerable to white-box attacks and struggles to adapt to heterogeneous clients.
This paper proposes a selective knowledge sharing mechanism for FD, termed Selective-FD.
arXiv Detail & Related papers (2023-04-04T12:04:19Z) - 10 Security and Privacy Problems in Large Foundation Models [69.70602220716718]
A pre-trained foundation model is like an operating system'' of the AI ecosystem.
A security or privacy issue of a pre-trained foundation model leads to a single point of failure for the AI ecosystem.
In this book chapter, we discuss 10 basic security and privacy problems for the pre-trained foundation models.
arXiv Detail & Related papers (2021-10-28T21:45:53Z) - On the Opportunities and Risks of Foundation Models [256.61956234436553]
We call these models foundation models to underscore their critically central yet incomplete character.
This report provides a thorough account of the opportunities and risks of foundation models.
To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration.
arXiv Detail & Related papers (2021-08-16T17:50:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.