論文の概要: See What LLMs Cannot Answer: A Self-Challenge Framework for Uncovering LLM Weaknesses
- arxiv url: http://arxiv.org/abs/2408.08978v2
- Date: Tue, 1 Oct 2024 01:40:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 07:07:05.329174
- Title: See What LLMs Cannot Answer: A Self-Challenge Framework for Uncovering LLM Weaknesses
- Title(参考訳): LLMが答えられないものは何か - LLMの弱点を明らかにするための自己組織化フレームワーク
- Authors: Yulong Chen, Yang Liu, Jianhao Yan, Xuefeng Bai, Ming Zhong, Yinghao Yang, Ziyi Yang, Chenguang Zhu, Yue Zhang,
- Abstract要約: 本稿では,Human-in-the-loopを用いたセルフチェレンジ評価フレームワークを提案する。
GPT-4が答えられないシードインスタンスから始めて、GPT-4に新しいインスタンスを生成するのに使えるエラーパターンを要約するように促します。
次に,GPT-4が生成する1,835個のインスタンスと,人手によるゴールド応答を併用したベンチマーク,SC-G4を構築した。
- 参考スコア(独自算出の注目度): 51.975495361024606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The impressive performance of Large Language Models (LLMs) has consistently surpassed numerous human-designed benchmarks, presenting new challenges in assessing the shortcomings of LLMs. Designing tasks and finding LLMs' limitations are becoming increasingly important. In this paper, we investigate the question of whether an LLM can discover its own limitations from the errors it makes. To this end, we propose a Self-Challenge evaluation framework with human-in-the-loop. Starting from seed instances that GPT-4 fails to answer, we prompt GPT-4 to summarize error patterns that can be used to generate new instances and incorporate human feedback on them to refine these patterns for generating more challenging data, iteratively. We end up with 8 diverse patterns, such as text manipulation and questions with assumptions. We then build a benchmark, SC-G4, consisting of 1,835 instances generated by GPT-4 using these patterns, with human-annotated gold responses. The SC-G4 serves as a challenging benchmark that allows for a detailed assessment of LLMs' abilities. Our results show that only 44.96\% of instances in SC-G4 can be answered correctly by GPT-4. Interestingly, our pilot study indicates that these error patterns also challenge other LLMs, such as Claude-3 and Llama-3, and cannot be fully resolved through fine-tuning. Our work takes the first step to demonstrate that LLMs can autonomously identify their inherent flaws and provide insights for future dynamic and automatic evaluation.
- Abstract(参考訳): LLM(Large Language Models)の印象的なパフォーマンスは多くの人間設計のベンチマークを一貫して上回り、LLMの欠点を評価する上での新たな課題を提示している。
タスクの設計とLLMの制限を見つけることがますます重要になっている。
本稿では,LLMが誤りから自身の限界を発見できるかどうかを考察する。
そこで本研究では,Human-in-the-loopを用いたセルフチェレンジ評価フレームワークを提案する。
GPT-4が答えられないシードインスタンスから始めて、GPT-4に新しいインスタンスを生成するのに使えるエラーパターンを要約させ、それらに人間のフィードバックを取り入れて、より困難なデータを生成するためにこれらのパターンを洗練させます。
テキスト操作や仮定による質問など8つのパターンが出来上がりました。
次に,GPT-4が生成する1,835個のインスタンスと,人手によるゴールド応答を併用したベンチマーク,SC-G4を構築した。
SC-G4は、LSMの能力の詳細な評価を可能にする、挑戦的なベンチマークとして機能する。
GPT-4で正解できるのは, SC-G4 の44.96 % のみである。
興味深いことに、パイロット実験ではこれらのエラーパターンがClaude-3やLlama-3といった他のLSMにも挑戦しており、微調整で完全には解決できないことが示されている。
我々の研究は、LLMが自身の固有の欠陥を自律的に識別し、将来の動的かつ自動評価のための洞察を提供することを実証する第一歩を踏み出した。
関連論文リスト
- LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints [86.59857711385833]
実世界のマルチ制約命令に従うLLMの能力を評価するために設計された最初のベンチマークであるRealInstructを紹介する。
オープンソースモデルとプロプライエタリモデルのパフォーマンスギャップを解決するため,Decompose, Critique and Refine(DeCRIM)自己補正パイプラインを提案する。
この結果から,DeCRIMはフィードバックが弱い場合でも,RealInstructでは7.3%,IFEvalでは8.0%,Mistralでは7.3%向上した。
論文 参考訳(メタデータ) (2024-10-09T01:25:10Z) - Can LLMs replace Neil deGrasse Tyson? Evaluating the Reliability of LLMs as Science Communicators [22.567933207841968]
大規模言語モデル(LLM)とAIアシスタントは、専門家とアマチュアユーザーの両方で、指数関数的な利用増加を経験している。
本研究では,現在のLLMの信頼性を科学コミュニケータとして評価することに焦点を当てる。
複雑な科学概念に埋め込まれた742 Yes/No クエリからなる新しいデータセット SCiPS-QA を導入する。
論文 参考訳(メタデータ) (2024-09-21T06:48:32Z) - Navigating the Labyrinth: Evaluating and Enhancing LLMs' Ability to Reason About Search Problems [59.72548591120689]
我々は,11種類の検索問題を含む新しいベンチマークであるSearchBenchを紹介する。
もっとも先進的なLCMでさえ、これらの問題をエンドツーエンドのテキストで解決することができないことを示す。
LLMにその問題を解決するコードを生成するように指示することは助けになるが、GPT4のパフォーマンスは11.7%向上した。
論文 参考訳(メタデータ) (2024-06-18T00:44:58Z) - MiniCheck: Efficient Fact-Checking of LLMs on Grounding Documents [62.02920842630234]
GPT-4レベルの性能を持つが400倍の低コストでファクトチェックモデルを構築する方法を示す。
GPT-4を用いて合成トレーニングデータを構築することで,現実的かつ困難な事実エラーの事例を生成する。
評価のために, ファクトチェックとグラウンドグラウンド化に関する最近の研究から得られたデータセットを, 新たなベンチマーク LLM-AggreFact に統一する。
論文 参考訳(メタデータ) (2024-04-16T17:59:10Z) - Evaluating LLMs at Detecting Errors in LLM Responses [30.645694514606507]
この研究は、LLMによる客観的、現実的で多様なエラーからなる最初のエラー検出ベンチマークであるReaLMistakeを紹介した。
我々はReaLMistakeを用いて12の大規模言語モデルに基づいて誤り検出を行う。
論文 参考訳(メタデータ) (2024-04-04T17:19:47Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
我々は,言語モデル(LLM)の驚くべきパワーを活用して課題を解決することを検討する。
LLaMA2を微調整し,既存のエキスパートアノテートデータセットから自動生成したトレーニングデータを用いてTAT-LLM言語モデルを開発する。
論文 参考訳(メタデータ) (2024-01-24T04:28:50Z) - Instances Need More Care: Rewriting Prompts for Instances with LLMs in the Loop Yields Better Zero-Shot Performance [11.595274304409937]
大規模言語モデル(LLM)はゼロショットタスクのパフォーマンスに革命をもたらした。
レッツ・シンク・バイ・ステップ(Let's Think by Step)」のようなトリガーフレーズを使った現在の手法は依然として限られている。
本研究では,タスクインスタンスのゼロショットプロンプトを最適化するPRomPTedを導入する。
論文 参考訳(メタデータ) (2023-10-03T14:51:34Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
本稿では,大規模な言語モデルにおけるセーフガードを評価するための,最初のオープンソースデータセットを収集する。
我々は、自動安全性評価において、GPT-4に匹敵する結果を得るために、BERTライクな分類器をいくつか訓練する。
論文 参考訳(メタデータ) (2023-08-25T14:02:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。