論文の概要: Dynamic Graph Representation Learning for Passenger Behavior Prediction
- arxiv url: http://arxiv.org/abs/2408.09092v1
- Date: Sat, 17 Aug 2024 04:35:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 22:46:56.237428
- Title: Dynamic Graph Representation Learning for Passenger Behavior Prediction
- Title(参考訳): 乗客行動予測のための動的グラフ表現学習
- Authors: Mingxuan Xie, Tao Zou, Junchen Ye, Bowen Du, Runhe Huang,
- Abstract要約: 乗客の行動予測は、過去の搭乗情報と照会データを通して、乗客の旅行パターンを追跡することを目的としている。
これはスマートシティ開発と公共交通計画にとって不可欠である。
既存の研究は、個々の歴史的相互作用から学ぶための統計手法とシーケンシャルモデルに依存している。
- 参考スコア(独自算出の注目度): 7.179458364817048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Passenger behavior prediction aims to track passenger travel patterns through historical boarding and alighting data, enabling the analysis of urban station passenger flow and timely risk management. This is crucial for smart city development and public transportation planning. Existing research primarily relies on statistical methods and sequential models to learn from individual historical interactions, which ignores the correlations between passengers and stations. To address these issues, this paper proposes DyGPP, which leverages dynamic graphs to capture the intricate evolution of passenger behavior. First, we formalize passengers and stations as heterogeneous vertices in a dynamic graph, with connections between vertices representing interactions between passengers and stations. Then, we sample the historical interaction sequences for passengers and stations separately. We capture the temporal patterns from individual sequences and correlate the temporal behavior between the two sequences. Finally, we use an MLP-based encoder to learn the temporal patterns in the interactions and generate real-time representations of passengers and stations. Experiments on real-world datasets confirmed that DyGPP outperformed current models in the behavior prediction task, demonstrating the superiority of our model.
- Abstract(参考訳): 乗務員の行動予測は、歴史的搭乗や乗降データを通じて乗客の移動パターンを追跡することを目的としており、都市駅の乗客フローの分析と時間的リスク管理を可能にしている。
これはスマートシティ開発と公共交通計画にとって不可欠である。
既存の研究は主に、乗客と駅間の相関を無視する個々の歴史的相互作用から学ぶための統計手法とシーケンシャルモデルに依存している。
このような問題に対処するために,動的グラフを利用して乗客行動の複雑な進化を捉えるDyGPPを提案する。
まず、乗客と駅間の相互作用を表す頂点間の接続を動的グラフで表し、乗客と駅を異種頂点として定式化する。
そこで,本研究では,乗客と駅のインタラクション・シーケンスを別々にサンプリングした。
個々のシーケンスから時間的パターンをキャプチャし、その2つのシーケンス間の時間的挙動を相関づける。
最後に,MLPをベースとしたエンコーダを用いて,対話の時間パターンを学習し,乗客や駅のリアルタイム表現を生成する。
実世界のデータセットを用いた実験により、DyGPPは行動予測タスクにおいて現在のモデルよりも優れており、我々のモデルの優位性が示された。
関連論文リスト
- Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD(Iterative Interaction of Prediction and Planning Autonomous Driving)は、予測と計画のより良い統合を目的とした、タイムステップワイドなインタラクションである。
我々は,階層的動的キーオブジェクトに着目したego-to-agent,ego-to-map,ego-to-BEVインタラクション機構を設計し,インタラクションをモデル化する。
論文 参考訳(メタデータ) (2023-11-14T11:53:24Z) - Spatio-Temporal Dynamic Graph Relation Learning for Urban Metro Flow
Prediction [10.300311879377734]
トランスファー駅やノントランスファー駅など、異なる地下鉄駅には独自の交通パターンがある。
メトロステーションの複雑な時間的動的関係をモデル化することは困難である。
論文 参考訳(メタデータ) (2022-04-06T08:07:40Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
歩行者の立ち止まりと予測の新たな課題を紹介します。
都市交通における歩行者の立ち寄り行動を明示的に研究するためのベンチマークであるTransをリリースする。
歩行者の歩行動作に注釈を付けたいくつかの既存のデータセットから構築し、さまざまなシナリオや行動を実現する。
論文 参考訳(メタデータ) (2022-03-04T18:39:31Z) - Exploring Human Mobility for Multi-Pattern Passenger Prediction: A Graph
Learning Framework [10.75153377806738]
グラフ畳み込みネットワーク(GCN)に基づく多パターン乗客フロー予測フレームワークMPGCNを提案する。
我々はGCNを用いて、有用なトポロジ情報から特徴を抽出し、バスの乗客に隠された移動パターンを認識するディープクラスタリング手法を導入する。
我々の知る限り、この論文は、グラフ学習からバスの乗客フローを予測するためのマルチパターンアプローチを採用した最初の試みである。
論文 参考訳(メタデータ) (2022-02-17T06:17:23Z) - Individual Mobility Prediction via Attentive Marked Temporal Point
Processes [4.221871357181261]
本研究では,人体移動をモデル化し,旅行コスト(t,o,d)を共同で予測する点プロセスに基づく新しいモデルを提案する。
2つの大都市旅行データセットの実験結果から,ATTPPの優れた性能が示された。
論文 参考訳(メタデータ) (2021-09-06T19:55:42Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
歩行者と自転車の軌跡のデータセットであるEuro-PVIを提案する。
本研究では,都市環境におけるエージェント間のマルチモーダル共有潜在空間を表現的に学習する共同推論モデルを開発する。
我々は,エゴ車と歩行者(自転車)の相互作用を正確に予測するために捉えることの重要性を示すnuScenesとEuro-PVIデータセット上での成果を達成した。
論文 参考訳(メタデータ) (2021-06-22T15:40:21Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Passenger Mobility Prediction via Representation Learning for Dynamic
Directed and Weighted Graph [31.062303389341317]
本稿では,gallat (graph prediction with all attention) という新たなグラフアテンションネットワークを提案する。
Gallatでは、DDWグラフの3つの本質的な特性を包括的に組み込むことにより、3つの注意層を構築し、すべての履歴時間スロットにわたって異なる地域間の依存関係を完全にキャプチャします。
提案モデルを実世界のデータセット上で評価し,gallatが最先端のアプローチを上回ることを示した。
論文 参考訳(メタデータ) (2021-01-04T03:32:01Z) - Graph-SIM: A Graph-based Spatiotemporal Interaction Modelling for
Pedestrian Action Prediction [10.580548257913843]
本稿では,歩行者の横断行動を予測するための新しいグラフベースモデルを提案する。
既存のnuScenesデータセットに対して、3Dバウンディングボックスと歩行者行動アノテーションを提供する新しいデータセットを紹介します。
提案手法は,既存の手法と比較して,様々な指標を15%以上改善し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-12-03T18:28:27Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。