論文の概要: StylePrompter: Enhancing Domain Generalization with Test-Time Style Priors
- arxiv url: http://arxiv.org/abs/2408.09138v1
- Date: Sat, 17 Aug 2024 08:35:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 22:25:12.435201
- Title: StylePrompter: Enhancing Domain Generalization with Test-Time Style Priors
- Title(参考訳): StylePrompter: テスト時間スタイルでドメインの一般化を促進する
- Authors: Jiao Zhang, Jian Xu, Xu-Yao Zhang, Cheng-Lin Liu,
- Abstract要約: 実世界のアプリケーションでは、推論段階でのサンプル分布は、トレーニング段階でのものとしばしば異なる。
本稿では,訓練されたモデルを動的に適応させるために,言語モダリティのスタイルプロンプトを紹介する。
特に,現在の画像のスタイル情報をトークン埋め込み空間に埋め込むように,スタイルプロンサを訓練する。
スタイルトークン埋め込み空間と手作りスタイル正規化のオープンスペース分割により、トレーニング済みのスタイルプロンサが未知のドメインからのデータを効率的に処理できるようになる。
- 参考スコア(独自算出の注目度): 39.695604434738186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world applications, the sample distribution at the inference stage often differs from the one at the training stage, causing performance degradation of trained deep models. The research on domain generalization (DG) aims to develop robust algorithms that can improve the generalized performance in unseen domains by training on a few domains. However, the domain-agnostic vision model, trained on a limited number of domains using traditional domain generalization methods, cannot guarantee its effectiveness in dealing with unseen domains. The introduction of language can break the closed cognition space of the vision model, providing additional semantic information that cannot be inferred from vision-only datasets. In this paper, we propose to overcome the challenge in previous DG methods by introducing the style prompt in the language modality to adapt the trained model dynamically. In particular, we train a style prompter to extract style information of the current image into an embedding in the token embedding space and place it in front of the candidate category words as prior knowledge to prompt the model. Our open space partition of the style token embedding space and the hand-crafted style regularization enable the trained style prompter to handle data from unknown domains effectively. Extensive experiments verify the effectiveness of our method and demonstrate state-of-the-art performances on multiple public datasets. Codes will be available after the acceptance of this paper.
- Abstract(参考訳): 実世界のアプリケーションでは、推論段階でのサンプル分布は、トレーニング段階でのサンプル分布としばしば異なり、訓練された深層モデルの性能劣化を引き起こす。
ドメイン一般化(DG)の研究は、いくつかのドメインでトレーニングすることで、目に見えないドメインの一般化性能を改善する堅牢なアルゴリズムの開発を目的としている。
しかし、ドメインに依存しないビジョンモデルは、従来のドメイン一般化手法を用いて限られた数のドメインで訓練されているため、目に見えないドメインを扱う上での有効性を保証できない。
言語の導入は視覚モデルの閉じた認知空間を破り、視覚のみのデータセットから推測できない追加の意味情報を提供する。
本稿では,学習モデルに動的に適応する言語モーダルにスタイルプロンプトを導入することで,従来のDG手法の課題を克服することを提案する。
特に,既存の画像のスタイル情報をトークン埋め込み空間に埋め込んで,候補カテゴリー語の前に配置するスタイルプロンサを事前知識として訓練し,モデルのプロンプトを行う。
スタイルトークン埋め込み空間と手作りスタイル正規化のオープンスペース分割により、トレーニング済みのスタイルプロンサが未知のドメインからのデータを効率的に処理できるようになる。
大規模な実験により,提案手法の有効性が検証され,複数の公開データセット上での最先端性能が実証された。
この論文の受理後、コードは利用可能になる。
関連論文リスト
- In the Era of Prompt Learning with Vision-Language Models [1.060608983034705]
ドメイン一般化のためのドメインに依存しない新しい学習戦略であるtextscStyLIP を紹介する。
StyLIPは、スタイルプロジェクタを使用してドメイン固有のプロンプトトークンを学習することで、CLIPsビジョンエンコーダの視覚スタイルとコンテンツを切り離す。
また,CLIPの凍結視覚バックボーンを利用した非教師なし領域適応(DA)のためのAD-CLIPを提案する。
論文 参考訳(メタデータ) (2024-11-07T17:31:21Z) - WIDIn: Wording Image for Domain-Invariant Representation in Single-Source Domain Generalization [63.98650220772378]
We present WIDIn, Wording Images for Domain-Invariant representation, to disentangleative discriminative visual representation。
まず、ドメイン固有の言語を適応的に識別し、削除するために使用可能な、きめ細かいアライメントを組み込んだ言語を推定する。
WIDInは、CLIPのような事前訓練された視覚言語モデルと、MoCoやBERTのような個別訓練されたユニモーダルモデルの両方に適用可能であることを示す。
論文 参考訳(メタデータ) (2024-05-28T17:46:27Z) - Domain-Controlled Prompt Learning [49.45309818782329]
既存の素早い学習方法はドメイン認識やドメイン転送機構を欠いていることが多い。
特定のドメインに対するtextbfDomain-Controlled Prompt Learningを提案する。
本手法は,特定の領域画像認識データセットにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-09-30T02:59:49Z) - Prompting Diffusion Representations for Cross-Domain Semantic
Segmentation [101.04326113360342]
拡散事前学習は、セマンティックセグメンテーションのための並外れた領域一般化結果を達成する。
本研究では,シーンプロンプトとプロンプトランダム化戦略を導入し,セグメンテーションヘッドを訓練する際に,ドメイン不変情報をさらに混乱させる。
論文 参考訳(メタデータ) (2023-07-05T09:28:25Z) - Learning Domain Invariant Prompt for Vision-Language Models [31.581652862478965]
本稿では,メタプロンプト(MetaPrompt)と呼ばれる未確認領域に一般化可能な,固有領域不変プロンプトを直接生成する新しいプロンプト学習パラダイムを提案する。
我々の手法は既存の手法より一貫して大幅に優れています。
論文 参考訳(メタデータ) (2022-12-08T11:23:24Z) - A Curriculum-style Self-training Approach for Source-Free Semantic Segmentation [91.13472029666312]
ソースフリーなドメイン適応型セマンティックセマンティックセグメンテーションのためのカリキュラムスタイルの自己学習手法を提案する。
提案手法は, ソースフリーなセマンティックセグメンテーションタスクにおいて, 合成-実-実-実-実-実-実-非実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実
論文 参考訳(メタデータ) (2021-06-22T10:21:39Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
大規模ラベル付きトレーニングデータセットにより、ディープニューラルネットワークは、幅広いベンチマークビジョンタスクを拡張できるようになった。
多くのアプリケーションにおいて、大量のラベル付きデータを取得するのは非常に高価で時間を要する。
限られたラベル付きトレーニングデータに対処するため、大規模ラベル付きソースドメインでトレーニングされたモデルを、疎ラベルまたは未ラベルのターゲットドメインに直接適用しようと試みている人も多い。
論文 参考訳(メタデータ) (2020-09-01T00:06:50Z) - Generalizable Model-agnostic Semantic Segmentation via Target-specific
Normalization [24.14272032117714]
一般化可能なセマンティックセグメンテーションタスクのための新しいドメイン一般化フレームワークを提案する。
モデルに依存しない学習を利用してドメインシフト問題をシミュレートする。
観測対象領域と観測対象領域間のデータ分散の相違を考慮し、目標固有正規化方式を開発する。
論文 参考訳(メタデータ) (2020-03-27T09:25:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。