DRL-Based Resource Allocation for Motion Blur Resistant Federated Self-Supervised Learning in IoV
- URL: http://arxiv.org/abs/2408.09194v1
- Date: Sat, 17 Aug 2024 13:12:04 GMT
- Title: DRL-Based Resource Allocation for Motion Blur Resistant Federated Self-Supervised Learning in IoV
- Authors: Xueying Gu, Qiong Wu, Pingyi Fan, Qiang Fan, Nan Cheng, Wen Chen, Khaled B. Letaief,
- Abstract summary: In the Internet of Vehicles (IoV), Federated Learning (FL) provides a privacy-preserving solution by aggregating local models without sharing data.
Traditional supervised learning requires image data with labels, but data labeling involves significant manual effort.
We address energy consumption and delay in the BFSSL process by proposing a Deep Reinforcement Learning (DRL)-based resource allocation scheme.
- Score: 27.713716107122572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the Internet of Vehicles (IoV), Federated Learning (FL) provides a privacy-preserving solution by aggregating local models without sharing data. Traditional supervised learning requires image data with labels, but data labeling involves significant manual effort. Federated Self-Supervised Learning (FSSL) utilizes Self-Supervised Learning (SSL) for local training in FL, eliminating the need for labels while protecting privacy. Compared to other SSL methods, Momentum Contrast (MoCo) reduces the demand for computing resources and storage space by creating a dictionary. However, using MoCo in FSSL requires uploading the local dictionary from vehicles to Base Station (BS), which poses a risk of privacy leakage. Simplified Contrast (SimCo) addresses the privacy leakage issue in MoCo-based FSSL by using dual temperature instead of a dictionary to control sample distribution. Additionally, considering the negative impact of motion blur on model aggregation, and based on SimCo, we propose a motion blur-resistant FSSL method, referred to as BFSSL. Furthermore, we address energy consumption and delay in the BFSSL process by proposing a Deep Reinforcement Learning (DRL)-based resource allocation scheme, called DRL-BFSSL. In this scheme, BS allocates the Central Processing Unit (CPU) frequency and transmission power of vehicles to minimize energy consumption and latency, while aggregating received models based on the motion blur level. Simulation results validate the effectiveness of our proposed aggregation and resource allocation methods.
Related papers
- Model Partition and Resource Allocation for Split Learning in Vehicular Edge Networks [24.85135243655983]
This paper proposes a novel U-shaped split federated learning (U-SFL) framework to address these challenges.
U-SFL is able to enhance privacy protection by keeping both raw data and labels on the vehicular user (VU) side.
To optimize communication efficiency, we introduce a semantic-aware auto-encoder (SAE) that significantly reduces the dimensionality of transmitted data.
arXiv Detail & Related papers (2024-11-11T07:59:13Z) - TinyML NLP Approach for Semantic Wireless Sentiment Classification [49.801175302937246]
We introduce split learning (SL) as an energy-efficient alternative, privacy-preserving tiny machine learning (MLTiny) scheme.
Our results show that SL reduces processing power and CO2 emissions while maintaining high accuracy, whereas FL offers a balanced compromise between efficiency and privacy.
arXiv Detail & Related papers (2024-11-09T21:26:59Z) - Mobility-Aware Federated Self-supervised Learning in Vehicular Network [8.30695698868618]
Federated Learning (FL) is an advanced distributed machine learning approach.
It protects the privacy of each vehicle by allowing the model to be trained on multiple devices simultaneously without the need to upload all data to a road side unit (RSU)
This paper proposes a FL algorithm based on image blur level to aggregation, called FLSimCo, which does not require labels and serves as a pre-training stage for self-supervised learning in the vehicular environment.
arXiv Detail & Related papers (2024-08-01T03:28:10Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - LW-FedSSL: Resource-efficient Layer-wise Federated Self-supervised Learning [14.413037571286564]
We propose LW-FedSSL, a layer-wise self-supervised learning approach that allows edge devices to incrementally train a single layer of the model at a time.
We introduce server-side calibration and representation alignment mechanisms to ensure LW-FedSSL delivers performance on par with conventional federated self-supervised learning (FedSSL)
With the proposed mechanisms, LW-FedSSL achieves a $3.3 times$ reduction in memory usage, $2.1 times$ fewer computational operations (FLOPs), and a $3.2 times$ lower communication cost.
arXiv Detail & Related papers (2024-01-22T01:57:31Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
We study the potential of semi-supervised learning for class-agnostic motion prediction.
Our framework adopts a consistency-based self-training paradigm, enabling the model to learn from unlabeled data.
Our method exhibits comparable performance to weakly and some fully supervised methods.
arXiv Detail & Related papers (2023-12-13T09:32:50Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - Bayesian Federated Learning over Wireless Networks [87.37301441859925]
Federated learning is a privacy-preserving and distributed training method using heterogeneous data sets stored at local devices.
This paper presents an efficient modified BFL algorithm called scalableBFL (SBFL)
arXiv Detail & Related papers (2020-12-31T07:32:44Z) - Federated Learning for Hybrid Beamforming in mm-Wave Massive MIMO [12.487990897680422]
We introduce a federated learning (FL) based framework for hybrid beamforming, where the model training is performed at the base station.
We design a convolutional neural network, in which the input is the channel data, yielding the analog beamformers at the output.
FL is demonstrated to be more tolerant to the imperfections and corruptions in the channel data as well as having less transmission overhead than CML.
arXiv Detail & Related papers (2020-05-20T11:21:07Z) - Resource Management for Blockchain-enabled Federated Learning: A Deep
Reinforcement Learning Approach [54.29213445674221]
Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO)
The issue of BFL is that the mobile devices have energy and CPU constraints that may reduce the system lifetime and training efficiency.
We propose to use the Deep Reinforcement Learning (DRL) to derive the optimal decisions for theO.
arXiv Detail & Related papers (2020-04-08T16:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.