論文の概要: A theoretical framework for reservoir computing on networks of organic electrochemical transistors
- arxiv url: http://arxiv.org/abs/2408.09223v1
- Date: Sat, 17 Aug 2024 15:04:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 21:39:37.433296
- Title: A theoretical framework for reservoir computing on networks of organic electrochemical transistors
- Title(参考訳): 有機電気化学トランジスタのネットワークにおける貯水池計算の理論的枠組み
- Authors: Nicholas W. Landry, Beckett R. Hyde, Jake C. Perez, Sean E. Shaheen, Juan G. Restrepo,
- Abstract要約: 有機電気化学トランジスタ (OECTs) は非線形過渡特性を持つ物理デバイスである。
我々は,OECTを非線形単位として,貯水池コンピュータをシミュレーションするための理論的枠組みを提案する。
このような実装は、標準的な貯水池コンピュータ実装に匹敵する性能で、ロレンツアトラクションを正確に予測できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient and accurate prediction of physical systems is important even when the rules of those systems cannot be easily learned. Reservoir computing, a type of recurrent neural network with fixed nonlinear units, is one such prediction method and is valued for its ease of training. Organic electrochemical transistors (OECTs) are physical devices with nonlinear transient properties that can be used as the nonlinear units of a reservoir computer. We present a theoretical framework for simulating reservoir computers using OECTs as the non-linear units as a test bed for designing physical reservoir computers. We present a proof of concept demonstrating that such an implementation can accurately predict the Lorenz attractor with comparable performance to standard reservoir computer implementations. We explore the effect of operating parameters and find that the prediction performance strongly depends on the pinch-off voltage of the OECTs.
- Abstract(参考訳): 物理系の規則が容易に学べない場合でも、物理的システムの効率的かつ正確な予測が重要である。
固定された非線形ユニットを持つリカレントニューラルネットワークの一種であるReservoir Computingは、そのような予測方法のひとつであり、トレーニングの容易さで評価されている。
有機電気化学トランジスタ (OECTs) は、貯水池コンピュータの非線形ユニットとして使用できる非線形過渡特性を持つ物理デバイスである。
我々は,OECTを非線形ユニットとして使用した貯水池コンピュータをシミュレーションするための理論的枠組みを,物理貯水池コンピュータを設計するためのテストベッドとして提案する。
本稿では,そのような実装が標準的な貯水池コンピュータ実装に匹敵する性能で,ロレンツ誘引器を正確に予測できることを実証する概念実証を示す。
動作パラメータの影響を調べた結果,予測性能はOECTのピンチオフ電圧に強く依存していることが判明した。
関連論文リスト
- Tight Stability, Convergence, and Robustness Bounds for Predictive Coding Networks [60.3634789164648]
予測符号化(PC)のようなエネルギーベースの学習アルゴリズムは、機械学習コミュニティにおいて大きな注目を集めている。
動的システム理論のレンズを用いて,PCの安定性,堅牢性,収束性を厳密に解析する。
論文 参考訳(メタデータ) (2024-10-07T02:57:26Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
機械学習を用いた非線形力学系の制御は、システムを周期性のような単純な振る舞いに駆動するだけでなく、より複雑な任意の力学を駆動する。
まず, 従来の貯水池計算が優れていることを示す。
次のステップでは、これらの結果を異なるトレーニングデータに基づいて比較し、代わりに次世代貯水池コンピューティングを使用する別のセットアップと比較する。
その結果、通常のトレーニングデータに対して同等のパフォーマンスを提供する一方で、次世代RCは、非常に限られたデータしか利用できない状況において、著しくパフォーマンスが向上していることがわかった。
論文 参考訳(メタデータ) (2023-07-14T07:05:17Z) - Bose Einstein condensate as nonlinear block of a Machine Learning
pipeline [0.7695660509846216]
量子ガスの非線形進化を機械学習パイプラインに埋め込む方法を示す。
準1次元のカリウム原子雲を用いて非線形関数の回帰と凝縮に成功したことを示す。
論文 参考訳(メタデータ) (2023-04-28T15:26:18Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
イベントベース3要素局所塑性(ETLP)の計算複雑性に明らかな優位性を有する精度の競争性能を示す。
また, 局所的可塑性を用いた場合, スパイキングニューロンの閾値適応, 繰り返しトポロジーは, 時間的構造が豊富な時間的パターンを学習するために必要であることを示した。
論文 参考訳(メタデータ) (2023-01-19T19:45:42Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Optimal reservoir computers for forecasting systems of nonlinear
dynamics [0.0]
低接続性貯水池は、ノイズレスローレンツと結合したウィルソン・コーワンシステムの予測において、高接続性よりも優れた性能を示すことを示す。
また, 予期せぬ非連結ノード(RUN)の貯水池が, リンクネットワークトポロジの貯水池よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-09T09:36:31Z) - Physical reservoir computing using finitely-sampled quantum systems [0.0]
貯留層計算は物理貯水池の非線形力学を利用して複雑な時系列処理を行う。
ここでは、非線形量子貯水池を用いた連続測定による貯水池計算の枠組みについて述べる。
論文 参考訳(メタデータ) (2021-10-26T16:46:14Z) - The Computational Capacity of LRC, Memristive and Hybrid Reservoirs [1.657441317977376]
貯留層計算(Reservoir computing)は、高次元力学系(enmphreservoir)を用いて時系列データを近似し予測する機械学習パラダイムである。
本稿では, 線形素子(抵抗素子, インダクタ, コンデンサ)と非線形メモリ素子(メムリスタ)の両方を含む電子貯水池の実現可能性と最適設計について分析する。
我々の電子貯水池は、従来の「エコステートネットワーク」貯水池の性能と直接ハードウェアで実装される形で一致または超過することができる。
論文 参考訳(メタデータ) (2020-08-31T21:24:45Z) - OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
Atomic-Orbital Features [42.96944345045462]
textscOrbNetは、学習効率と転送可能性の観点から、既存のメソッドよりも優れています。
薬物のような分子のデータセットに応用するために、textscOrbNetは1000倍以上の計算コストでDFTの化学的精度でエネルギーを予測する。
論文 参考訳(メタデータ) (2020-07-15T22:38:41Z) - Predictive Coding Approximates Backprop along Arbitrary Computation
Graphs [68.8204255655161]
我々は、コア機械学習アーキテクチャを予測的符号化に翻訳する戦略を開発する。
私たちのモデルは、挑戦的な機械学習ベンチマークのバックプロップと同等に機能します。
本手法は,ニューラルネットワークに標準機械学習アルゴリズムを直接実装できる可能性を高める。
論文 参考訳(メタデータ) (2020-06-07T15:35:47Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
本稿では,勾配降下による終端から終端までのアナログニューラルネットワークの学習法を提案する。
数学的には、アナログニューラルネットワークのクラス(非線形抵抗性ネットワークと呼ばれる)がエネルギーベースモデルであることが示される。
我々の研究は、オンチップ学習をサポートする、超高速でコンパクトで低消費電力のニューラルネットワークの新世代の開発を導くことができる。
論文 参考訳(メタデータ) (2020-06-02T23:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。