論文の概要: Siamese Multiple Attention Temporal Convolution Networks for Human Mobility Signature Identification
- arxiv url: http://arxiv.org/abs/2408.09230v1
- Date: Sat, 17 Aug 2024 15:27:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 21:39:37.424870
- Title: Siamese Multiple Attention Temporal Convolution Networks for Human Mobility Signature Identification
- Title(参考訳): 人体信号識別のためのシームズ多重注意時間畳み込みネットワーク
- Authors: Zhipeng Zheng, Yuchen Jiang, Shiyao Zhang, Xuetao Wei,
- Abstract要約: 我々は,TNアーキテクチャとマルチヘッド自己注意の両長所を活かすため,シームズ多重注意時間畳み込みネットワーク(シームズMA-TCN)を提案する。
2つの実世界のタクシー軌道データを用いて実験を行った結果,提案手法は局所的な鍵情報と長期的依存関係の両方を効果的に抽出することがわかった。
- 参考スコア(独自算出の注目度): 9.25278235266564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Human Mobility Signature Identification (HuMID) problem stands as a fundamental task within the realm of driving style representation, dedicated to discerning latent driving behaviors and preferences from diverse driver trajectories for driver identification. Its solutions hold significant implications across various domains (e.g., ride-hailing, insurance), wherein their application serves to safeguard users and mitigate potential fraudulent activities. Present HuMID solutions often exhibit limitations in adaptability when confronted with lengthy trajectories, consequently incurring substantial computational overhead. Furthermore, their inability to effectively extract crucial local information further impedes their performance. To address this problem, we propose a Siamese Multiple Attention Temporal Convolutional Network (Siamese MA-TCN) to capitalize on the strengths of both TCN architecture and multi-head self-attention, enabling the proficient extraction of both local and long-term dependencies. Additionally, we devise a novel attention mechanism tailored for the efficient aggregation of multi-scale representations derived from our model. Experimental evaluations conducted on two real-world taxi trajectory datasets reveal that our proposed model effectively extracts both local key information and long-term dependencies. These findings highlight the model's outstanding generalization capabilities, demonstrating its robustness and adaptability across datasets of varying sizes.
- Abstract(参考訳): HuMID(Human Mobility Signature Identification)問題(HuMID)は運転スタイル表現の領域における基本的な課題であり、運転者識別のための様々な運転軌跡からの潜伏運転行動や嗜好を識別することを目的としている。
そのソリューションは、さまざまなドメイン(例えば、配車サービス、保険)に重大な影響を与える。
現在のHumIDソリューションは、長い軌跡に直面した場合、適応性の限界をしばしば示し、結果としてかなりの計算オーバーヘッドが生じる。
さらに、重要なローカル情報を効果的に抽出できないことは、そのパフォーマンスをさらに阻害する。
そこで本研究では,TNアーキテクチャとマルチヘッド自己意識の両長所を生かし,局所的および長期的依存関係の高度抽出を可能にするため,シームズ多重注意時間畳み込みネットワーク(Siamese Multiple Attention Temporal Convolutional Network, MA-TCN)を提案する。
さらに,本モデルから導出したマルチスケール表現の効率的な集約に適した新しいアテンション機構を考案する。
2つの実世界のタクシー軌道データを用いて実験を行った結果,提案手法は局所的な鍵情報と長期的依存関係の両方を効果的に抽出することがわかった。
これらの知見は、モデルの卓越した一般化能力を強調し、さまざまなサイズのデータセット間の堅牢性と適応性を実証した。
関連論文リスト
- Transferable Unsupervised Outlier Detection Framework for Human Semantic Trajectories [9.816270572121724]
本稿では,TOD4Traj(Transferable Outlier Detection for Human Semantic Trajectories)フレームワークを提案する。
ToD4Trajはまず、多様なデータ特徴表現を整合させるモダリティ機能統一モジュールを導入した。
コントラスト学習モジュールは、時間的および集団間の定期的な移動パターンを特定するために、さらにプロポーズされる。
論文 参考訳(メタデータ) (2024-09-28T22:31:00Z) - Self-Supervised State Space Model for Real-Time Traffic Accident Prediction Using eKAN Networks [18.385759762991896]
SSL-eKambaは、交通事故予測のための効率的な自己組織化フレームワークである。
一般化を促進するために,交通パターン表現を適応的に改善する2つの自己教師付き補助タスクを設計する。
2つの実世界のデータセットの実験では、SSL-eKambaは最先端のベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2024-09-09T14:25:51Z) - Unsupervised Representation Learning of Complex Time Series for Maneuverability State Identification in Smart Mobility [0.0]
スマートモビリティでは、操縦パターンのような行動の時間的ダイナミクスを提供する上で、MSSは重要な役割を果たす。
本研究では,センサを用いた車両から収集したMSSデータのモデル化に関わる課題に対処することを目的とする。
我々の目標は、スマートモビリティにおける操作状態の特定における2つの異なる教師なし表現学習手法の有効性を検討することである。
論文 参考訳(メタデータ) (2024-08-26T15:16:18Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
自動車再同定は、都市規模の車両分析システムにおいて重要な要素の1つである。
車両再設計のための最先端のソリューションの多くは、既存のre-idベンチマークの精度向上に重点を置いており、計算の複雑さを無視することが多い。
推論時間に1つのネットワークのみを使用する自己教師型学習によって、シンプルで効果的なハイブリッドソリューションを提案する。
論文 参考訳(メタデータ) (2022-05-16T12:14:42Z) - Discriminative-Region Attention and Orthogonal-View Generation Model for
Vehicle Re-Identification [7.5366501970852955]
複数の課題は、視覚に基づく車両のRe-ID手法の適用を妨げる。
提案したDRAモデルでは,識別領域の特徴を自動的に抽出し,類似した車両を識別することができる。
また、OVGモデルでは、入力ビュー機能に基づいてマルチビュー機能を生成し、視点ミスマッチの影響を低減することができる。
論文 参考訳(メタデータ) (2022-04-28T07:46:03Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
本稿では,複雑で非線形に進化する動的ユーザの嗜好をモデル化する,自己変調型注意ネットワークを提案する。
提案手法がトップNシーケンシャルなレコメンデーションタスクに与える影響を実証的に示すとともに,3つの大規模実世界のデータセットによる結果から,我々のモデルが最先端のパフォーマンスを達成できることを示す。
論文 参考訳(メタデータ) (2022-03-30T03:54:11Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
トラフィックシーンの面白さを定量化する多様な基準を活用した新たなデータ選択手法を提案する。
実験の結果,提案するキュレーションパイプラインは,より汎用的で高いパフォーマンスをもたらすデータセットを選択できることが判明した。
論文 参考訳(メタデータ) (2021-01-16T23:45:02Z) - AttnMove: History Enhanced Trajectory Recovery via Attentional Network [15.685998183691655]
AttnMoveと呼ばれる新しい注目ニューラルネットワークベースのモデルを提案し、観測されていない位置を回復することによって個々の軌道を高密度化する。
本研究では,実世界の2つのデータセット上でのモデル評価を行い,最新手法と比較した性能向上を示す。
論文 参考訳(メタデータ) (2021-01-03T15:45:35Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。