Deformation-aware GAN for Medical Image Synthesis with Substantially Misaligned Pairs
- URL: http://arxiv.org/abs/2408.09432v1
- Date: Sun, 18 Aug 2024 10:29:35 GMT
- Title: Deformation-aware GAN for Medical Image Synthesis with Substantially Misaligned Pairs
- Authors: Bowen Xin, Tony Young, Claire E Wainwright, Tamara Blake, Leo Lebrat, Thomas Gaass, Thomas Benkert, Alto Stemmer, David Coman, Jason Dowling,
- Abstract summary: We propose a novel Deformation-aware GAN (DA-GAN) to dynamically correct the misalignment during the image synthesis based on inverse consistency.
Experimental results show that DA-GAN achieved superior performance on a public dataset with simulated misalignments and a real-world lung MRI-CT dataset with respiratory motion misalignment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical image synthesis generates additional imaging modalities that are costly, invasive or harmful to acquire, which helps to facilitate the clinical workflow. When training pairs are substantially misaligned (e.g., lung MRI-CT pairs with respiratory motion), accurate image synthesis remains a critical challenge. Recent works explored the directional registration module to adjust misalignment in generative adversarial networks (GANs); however, substantial misalignment will lead to 1) suboptimal data mapping caused by correspondence ambiguity, and 2) degraded image fidelity caused by morphology influence on discriminators. To address the challenges, we propose a novel Deformation-aware GAN (DA-GAN) to dynamically correct the misalignment during the image synthesis based on multi-objective inverse consistency. Specifically, in the generative process, three levels of inverse consistency cohesively optimise symmetric registration and image generation for improved correspondence. In the adversarial process, to further improve image fidelity under misalignment, we design deformation-aware discriminators to disentangle the mismatched spatial morphology from the judgement of image fidelity. Experimental results show that DA-GAN achieved superior performance on a public dataset with simulated misalignments and a real-world lung MRI-CT dataset with respiratory motion misalignment. The results indicate the potential for a wide range of medical image synthesis tasks such as radiotherapy planning.
Related papers
- Learning Brain Tumor Representation in 3D High-Resolution MR Images via Interpretable State Space Models [42.55786269051626]
We propose a novel state-space-model (SSM)-based masked autoencoder which scales ViT-like models to handle high-resolution data effectively.
We propose a latent-to-spatial mapping technique that enables direct visualization of how latent features correspond to specific regions in the input volumes.
Our results highlight the potential of SSM-based self-supervised learning to transform radiomics analysis by combining efficiency and interpretability.
arXiv Detail & Related papers (2024-09-12T04:36:50Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
We present a deep learning (DL)-based method for accelerated cine and multi-contrast reconstruction in the context of cardiac imaging.
Our method optimize in both the image and k-space domains, allowing for high reconstruction fidelity.
arXiv Detail & Related papers (2023-10-10T13:46:11Z) - Adaptive Input-image Normalization for Solving the Mode Collapse Problem in GAN-based X-ray Images [0.08192907805418582]
This work contributes an empirical demonstration of the benefits of integrating the adaptive input-image normalization with the Deep Conversaal GAN and Auxiliary GAN to alleviate the mode collapse problems.
Results demonstrate that the DCGAN and the ACGAN with adaptive input-image normalization outperform the DCGAN and ACGAN with un-normalized X-ray images.
arXiv Detail & Related papers (2023-09-21T16:43:29Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Spatial and Modal Optimal Transport for Fast Cross-Modal MRI Reconstruction [54.19448988321891]
We propose an end-to-end deep learning framework that utilizes T1-weighted images (T1WIs) as auxiliary modalities to expedite T2WIs' acquisitions.
We employ Optimal Transport (OT) to synthesize T2WIs by aligning T1WIs and performing cross-modal synthesis.
We prove that the reconstructed T2WIs and the synthetic T2WIs become closer on the T2 image manifold with iterations increasing.
arXiv Detail & Related papers (2023-05-04T12:20:51Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
We propose a symmetry enhanced attention network (SEAN) for acute ischemic infarct segmentation.
Our proposed network automatically transforms an input CT image into the standard space where the brain tissue is bilaterally symmetric.
The proposed SEAN outperforms some symmetry-based state-of-the-art methods in terms of both dice coefficient and infarct localization.
arXiv Detail & Related papers (2021-10-11T07:13:26Z) - ResViT: Residual vision transformers for multi-modal medical image
synthesis [0.0]
We propose a novel generative adversarial approach for medical image synthesis, ResViT, to combine local precision of convolution operators with contextual sensitivity of vision transformers.
Our results indicate the superiority of ResViT against competing methods in terms of qualitative observations and quantitative metrics.
arXiv Detail & Related papers (2021-06-30T12:57:37Z) - Segmentation-Renormalized Deep Feature Modulation for Unpaired Image
Harmonization [0.43012765978447565]
Cycle-consistent Generative Adversarial Networks have been used to harmonize image sets between a source and target domain.
These methods are prone to instability, contrast inversion, intractable manipulation of pathology, and steganographic mappings which limit their reliable adoption in real-world medical imaging.
We propose a segmentation-renormalized image translation framework to reduce inter-scanner harmonization while preserving anatomical layout.
arXiv Detail & Related papers (2021-02-11T23:53:51Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.