Identifying Speakers and Addressees of Quotations in Novels with Prompt Learning
- URL: http://arxiv.org/abs/2408.09452v1
- Date: Sun, 18 Aug 2024 12:19:18 GMT
- Title: Identifying Speakers and Addressees of Quotations in Novels with Prompt Learning
- Authors: Yuchen Yan, Hanjie Zhao, Senbin Zhu, Hongde Liu, Zhihong Zhang, Yuxiang Jia,
- Abstract summary: We propose prompt learning-based methods for speaker and addressee identification based on fine-tuned pre-trained models.
Experiments on both Chinese and English datasets show the effectiveness of the proposed methods.
- Score: 5.691280935924612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quotations in literary works, especially novels, are important to create characters, reflect character relationships, and drive plot development. Current research on quotation extraction in novels primarily focuses on quotation attribution, i.e., identifying the speaker of the quotation. However, the addressee of the quotation is also important to construct the relationship between the speaker and the addressee. To tackle the problem of dataset scarcity, we annotate the first Chinese quotation corpus with elements including speaker, addressee, speaking mode and linguistic cue. We propose prompt learning-based methods for speaker and addressee identification based on fine-tuned pre-trained models. Experiments on both Chinese and English datasets show the effectiveness of the proposed methods, which outperform methods based on zero-shot and few-shot large language models.
Related papers
- Identifying Speakers in Dialogue Transcripts: A Text-based Approach Using Pretrained Language Models [83.7506131809624]
We introduce an approach to identifying speaker names in dialogue transcripts, a crucial task for enhancing content accessibility and searchability in digital media archives.
We present a novel, large-scale dataset derived from the MediaSum corpus, encompassing transcripts from a wide range of media sources.
We propose novel transformer-based models tailored for SpeakerID, leveraging contextual cues within dialogues to accurately attribute speaker names.
arXiv Detail & Related papers (2024-07-16T18:03:58Z) - Distinguishing Fictional Voices: a Study of Authorship Verification
Models for Quotation Attribution [12.300285585201767]
We explore stylistic representations of characters built by encoding their quotes with off-the-shelf pretrained Authorship Verification models.
Results suggest that the combination of stylistic and topical information captured in some of these models accurately distinguish characters among each other, but does not necessarily improve over semantic-only models when attributing quotes.
arXiv Detail & Related papers (2024-01-30T12:49:40Z) - Improving Automatic Quotation Attribution in Literary Novels [21.164701493247794]
Current models for quotation attribution in literary novels assume varying levels of available information in their training and test data.
We benchmark state-of-the-art models on each of these sub-tasks independently, using a large dataset of annotated coreferences and quotations in literary novels.
We also train and evaluate models for the speaker attribution task in particular, showing that a simple sequential prediction model achieves accuracy scores on par with state-of-the-art models.
arXiv Detail & Related papers (2023-07-07T17:37:01Z) - Cross-Lingual Speaker Identification Using Distant Supervision [84.51121411280134]
We propose a speaker identification framework that addresses issues such as lack of contextual reasoning and poor cross-lingual generalization.
We show that the resulting model outperforms previous state-of-the-art methods on two English speaker identification benchmarks by up to 9% in accuracy and 5% with only distant supervision.
arXiv Detail & Related papers (2022-10-11T20:49:44Z) - A Benchmark for Understanding and Generating Dialogue between Characters
in Stories [75.29466820496913]
We present the first study to explore whether machines can understand and generate dialogue in stories.
We propose two new tasks including Masked Dialogue Generation and Dialogue Speaker Recognition.
We show the difficulty of the proposed tasks by testing existing models with automatic and manual evaluation on DialStory.
arXiv Detail & Related papers (2022-09-18T10:19:04Z) - Who says like a style of Vitamin: Towards Syntax-Aware
DialogueSummarization using Multi-task Learning [2.251583286448503]
We focus on the association between utterances from individual speakers and unique syntactic structures.
Speakers have unique textual styles that can contain linguistic information, such as voiceprint.
We employ multi-task learning of both syntax-aware information and dialogue summarization.
arXiv Detail & Related papers (2021-09-29T05:30:39Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
We explore the use of pre-trained language models to learn sentiment information of written texts for speech sentiment analysis.
We propose a pseudo label-based semi-supervised training strategy using a language model on an end-to-end speech sentiment approach.
arXiv Detail & Related papers (2021-06-11T20:15:21Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks.
We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way.
arXiv Detail & Related papers (2020-10-26T21:34:39Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
A multi-turn dialogue is composed of multiple utterances from two or more different speaker roles.
In the existing retrieval-based multi-turn dialogue modeling, the pre-trained language models (PrLMs) as encoder represent the dialogues coarsely.
We propose a novel model to fill such a gap by modeling the effective utterance-aware and speaker-aware representations entailed in a dialogue history.
arXiv Detail & Related papers (2020-09-14T15:07:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.