論文の概要: Source-Free Test-Time Adaptation For Online Surface-Defect Detection
- arxiv url: http://arxiv.org/abs/2408.09494v1
- Date: Sun, 18 Aug 2024 14:24:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 20:20:04.375659
- Title: Source-Free Test-Time Adaptation For Online Surface-Defect Detection
- Title(参考訳): オンライン表面欠陥検出のためのソースフリーテスト時間適応
- Authors: Yiran Song, Qianyu Zhou, Lizhuang Ma,
- Abstract要約: テスト時間適応型表面欠陥検出手法を提案する。
推論中にトレーニング済みのモデルを新しいドメインやクラスに適応させる。
実験では、最先端の技術よりも優れています。
- 参考スコア(独自算出の注目度): 29.69030283193086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surface defect detection is significant in industrial production. However, detecting defects with varying textures and anomaly classes during the test time is challenging. This arises due to the differences in data distributions between source and target domains. Collecting and annotating new data from the target domain and retraining the model is time-consuming and costly. In this paper, we propose a novel test-time adaptation surface-defect detection approach that adapts pre-trained models to new domains and classes during inference. Our approach involves two core ideas. Firstly, we introduce a supervisor to filter samples and select only those with high confidence to update the model. This ensures that the model is not excessively biased by incorrect data. Secondly, we propose the augmented mean prediction to generate robust pseudo labels and a dynamically-balancing loss to facilitate the model in effectively integrating classification and segmentation results to improve surface-defect detection accuracy. Our approach is real-time and does not require additional offline retraining. Experiments demonstrate it outperforms state-of-the-art techniques.
- Abstract(参考訳): 表面欠陥検出は工業生産において重要である。
しかし,テスト期間中に異なるテクスチャや異常なクラスで欠陥を検出することは困難である。
これは、ソースとターゲットドメイン間のデータ分散の違いに起因する。
ターゲットドメインから新しいデータを収集し、注釈付けし、モデルを再トレーニングするのは、時間とコストがかかります。
本稿では,事前学習したモデルを推論中に新しいドメインやクラスに適応させるテスト時間適応型表面欠陥検出手法を提案する。
私たちのアプローチには2つの中核的な考えがあります。
まず、サンプルをフィルタするスーパーバイザを導入し、信頼性の高い者のみを選択してモデルを更新する。
これにより、モデルは誤ったデータによって過度にバイアスを受けないことが保証される。
次に,ロバストな擬似ラベルを生成するための拡張平均予測と動的バランシング損失を提案し,分類とセグメンテーションを効果的に統合し,表面欠陥検出精度を向上させる。
我々のアプローチはリアルタイムであり、追加のオフライン再トレーニングを必要としない。
実験では、最先端の技術よりも優れています。
関連論文リスト
- Mitigating the Bias in the Model for Continual Test-Time Adaptation [32.33057968481597]
連続的テスト時間適応(Continuous Test-Time Adaptation, CTA)は、ソース事前学習モデルを目標ドメインの継続的な変更に適応させることを目的とした、困難なタスクである。
対象データの連鎖分布に常に適応するため、モデルは非常に偏りのある予測を示す。
本稿では,CTAシナリオの性能向上のために,この問題を緩和する。
論文 参考訳(メタデータ) (2024-03-02T23:37:16Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
深部変分自動エンコーダに基づく時系列異常検出手法(VAE)のための光・反オーバーフィット学習手法(LARA)を提案する。
本研究の目的は,1) 再学習過程を凸問題として定式化し, 過度に収束できること,2) 履歴データを保存せずに活用するルミネートブロックを設計すること,3) 潜在ベクトルと再構成データの微調整を行うと, 線形形成が基底真実と微調整されたブロックとの誤りを最小に調整できることを数学的に証明することである。
論文 参考訳(メタデータ) (2023-10-09T12:36:16Z) - Improving novelty detection with generative adversarial networks on hand
gesture data [1.3750624267664153]
本稿では,GAN(Generative Adversarial Network)フレームワークで訓練されたニューラルネットワーク(ANN)を用いた語彙外ジェスチャの分類方法を提案する。
生成モデルは、新しいサンプルとターゲットベクトルでオンライン形式でデータセットを拡大し、識別モデルはサンプルのクラスを決定する。
論文 参考訳(メタデータ) (2023-04-13T17:50:15Z) - TeST: Test-time Self-Training under Distribution Shift [99.68465267994783]
Test-Time Self-Training (TeST)は、あるソースデータとテスト時の新しいデータ分散に基づいてトレーニングされたモデルを入力する技術である。
また,TeSTを用いたモデルでは,ベースラインテスト時間適応アルゴリズムよりも大幅に改善されていることがわかった。
論文 参考訳(メタデータ) (2022-09-23T07:47:33Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
テスト時間適応(TTA)は、テスト時にラベルのないデータにモデルを適応させることによって、この問題に対処することを目的としている。
本稿では,クラス認識特徴アライメント(CAFA, Class-Aware Feature Alignment)と呼ばれる単純な機能アライメント損失を提案する。
論文 参考訳(メタデータ) (2022-06-01T03:02:07Z) - On-the-Fly Test-time Adaptation for Medical Image Segmentation [63.476899335138164]
ソースモデルをテスト時にターゲットデータに適応させることは、データシフト問題に対する効率的な解決策である。
本稿では、各畳み込みブロックに適応バッチ正規化層を設けるAdaptive UNetという新しいフレームワークを提案する。
テスト期間中、モデルは新しいテストイメージのみを取り込み、ドメインコードを生成して、テストデータに従ってソースモデルの特徴を適応させる。
論文 参考訳(メタデータ) (2022-03-10T18:51:29Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。