Deep Limit Model-free Prediction in Regression
- URL: http://arxiv.org/abs/2408.09532v3
- Date: Wed, 11 Sep 2024 23:30:45 GMT
- Title: Deep Limit Model-free Prediction in Regression
- Authors: Kejin Wu, Dimitris N. Politis,
- Abstract summary: We provide a Model-free approach based on Deep Neural Network (DNN) to accomplish point prediction and prediction interval under a general regression setting.
Our method is more stable and accurate compared to other DNN-based counterparts, especially for optimal point predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we provide a novel Model-free approach based on Deep Neural Network (DNN) to accomplish point prediction and prediction interval under a general regression setting. Usually, people rely on parametric or non-parametric models to bridge dependent and independent variables (Y and X). However, this classical method relies heavily on the correct model specification. Even for the non-parametric approach, some additive form is often assumed. A newly proposed Model-free prediction principle sheds light on a prediction procedure without any model assumption. Previous work regarding this principle has shown better performance than other standard alternatives. Recently, DNN, one of the machine learning methods, has received increasing attention due to its great performance in practice. Guided by the Model-free prediction idea, we attempt to apply a fully connected forward DNN to map X and some appropriate reference random variable Z to Y. The targeted DNN is trained by minimizing a specially designed loss function so that the randomness of Y conditional on X is outsourced to Z through the trained DNN. Our method is more stable and accurate compared to other DNN-based counterparts, especially for optimal point predictions. With a specific prediction procedure, our prediction interval can capture the estimation variability so that it can render a better coverage rate for finite sample cases. The superior performance of our method is verified by simulation and empirical studies.
Related papers
- Awareness of uncertainty in classification using a multivariate model and multi-views [1.3048920509133808]
The proposed model regularizes uncertain predictions, and trains to calculate both the predictions and their uncertainty estimations.
Given the multi-view predictions together with their uncertainties and confidences, we proposed several methods to calculate final predictions.
The proposed methodology was tested using CIFAR-10 dataset with clean and noisy labels.
arXiv Detail & Related papers (2024-04-16T06:40:51Z) - Deep Neural Networks for Semiparametric Frailty Models via H-likelihood [0.0]
We propose a new deep neural network based frailty (DNN-FM) for prediction of time-to-event data.
Joint estimators of the new h-likelihood model provide maximum likelihood for fixed parameters and best unbiased predictors for random frailties.
arXiv Detail & Related papers (2023-07-13T06:46:51Z) - Adaptive Modeling of Uncertainties for Traffic Forecasting [33.81668910587541]
QuanTraffic is a generic framework to enhance the capability of an arbitrary DNN model for uncertainty modeling.
It automatically learns a standard quantile function during the DNN model training to produce a prediction interval for the single-point prediction.
It dynamically adjusts the prediction interval based on the location and prediction window of the test input.
arXiv Detail & Related papers (2023-03-16T12:56:13Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Improving predictions of Bayesian neural nets via local linearization [79.21517734364093]
We argue that the Gauss-Newton approximation should be understood as a local linearization of the underlying Bayesian neural network (BNN)
Because we use this linearized model for posterior inference, we should also predict using this modified model instead of the original one.
We refer to this modified predictive as "GLM predictive" and show that it effectively resolves common underfitting problems of the Laplace approximation.
arXiv Detail & Related papers (2020-08-19T12:35:55Z) - Beyond Point Estimate: Inferring Ensemble Prediction Variation from
Neuron Activation Strength in Recommender Systems [21.392694985689083]
Ensemble method is one state-of-the-art benchmark for prediction uncertainty estimation.
We observe that prediction variations come from various randomness sources.
We propose to infer prediction variation from neuron activation strength and demonstrate the strong prediction power from activation strength features.
arXiv Detail & Related papers (2020-08-17T00:08:27Z) - Neural Jump Ordinary Differential Equations: Consistent Continuous-Time
Prediction and Filtering [6.445605125467574]
We introduce the Neural Jump ODE (NJ-ODE) that provides a data-driven approach to learn, continuously in time.
We show that our model converges to the $L2$-optimal online prediction.
We experimentally show that our model outperforms the baselines in more complex learning tasks.
arXiv Detail & Related papers (2020-06-08T16:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.