論文の概要: Galápagos: Automated N-Version Programming with LLMs
- arxiv url: http://arxiv.org/abs/2408.09536v1
- Date: Sun, 18 Aug 2024 16:44:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 18:24:47.958432
- Title: Galápagos: Automated N-Version Programming with LLMs
- Title(参考訳): Galápagos: LLMによるNバージョン自動プログラミング
- Authors: Javier Ron, Diogo Gaspar, Javier Cabrera-Arteaga, Benoit Baudry, Martin Monperrus,
- Abstract要約: Gal'apagosは、大規模な言語モデルを使用してプログラムの変種を生成するツールである。
ガラパゴスは機能的に等価であることが証明されたプログラム変種を生成できることを示す。
Gal'apagosが生成した変種は、実際の誤コンパイルバグからCコードを保護することができることを実証する。
- 参考スコア(独自算出の注目度): 10.573037638807024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the main challenges of N-Version Programming is development cost: it requires paying multiple teams to develop variants of the same system. To address this issue, we propose the automated generation of variants using large language models. We design, develop and evaluate Gal\'apagos: a tool for generating program variants using LLMs, validating their correctness and equivalence, and using them to assemble N-Version binaries. We evaluate Gal\'apagos by creating N-Version components of real-world C code. Our original results show that Gal\'apagos can produce program variants that are proven to be functionally equivalent, even when the variants are written in a different programming language. Our systematic diversity measurement indicate that functionally equivalent variants produced by Gal\'apagos, are statically different after compilation, and present diverging internal behavior at runtime. We demonstrate that the variants produced by Gal\'apagos can protect C code against real miscompilation bugs which affect the Clang compiler. Overall, our paper shows that producing N-Version software can be drastically automated by advanced usage of practical formal verification and generative language models.
- Abstract(参考訳): N-Version Programmingの主な課題の1つは開発コストである。
この問題に対処するために,大規模言語モデルを用いた変種の自動生成を提案する。
我々はGal\'apagosを設計、開発、評価し、LSMを用いてプログラム変種を生成し、それらの正しさと等価性を検証し、それらを用いてN-Versionバイナリを組み立てるツールである。
実世界のCコードのN-Versionコンポーネントを作成することでGal\'apagosを評価する。
元の結果から、Gal\'apagosは、異なるプログラミング言語で記述されている場合であっても、機能的に等価であることが証明されたプログラムの変種を生成できることが示されている。
我々の系統的な多様性測定は、Gal\'apagosによって生成される機能的に等価な変種がコンパイル後に静的に異なることを示し、実行時に内部の挙動が変化することを示す。
Gal\'apagosが生成した変種は、Clangコンパイラに影響を与える実際の誤コンパイルバグからCコードを保護することができることを実証する。
本稿は,N-Version ソフトウェアの作成を,実用的形式検証と生成言語モデルの高度利用により劇的に自動化できることを示す。
関連論文リスト
- Synthetic Programming Elicitation for Text-to-Code in Very Low-Resource Programming and Formal Languages [21.18996339478024]
SPEAC(emphsynthetic programming elicitation and compilation)を紹介する。
SPEACは、より頻繁に、意味的正しさを犠牲にすることなく、構文的に正しいプログラムを生成する。
UCLID5形式検証言語のケーススタディにおいて,SPEACの性能を実証的に評価した。
論文 参考訳(メタデータ) (2024-06-05T22:16:19Z) - CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
我々は,LLMの性能を高めるため,グラフィカル検索拡張コード生成フレームワークであるCodeGRAGを提案する。
CodeGRAGは、制御フローとデータフローに基づいて、コードブロックのグラフィカルなビューを構築し、プログラミング言語と自然言語のギャップを埋める。
ハードメタグラフプロンプト、ソフトプロンプト技術、事前訓練されたGNN専門家の目的の有効性を検証するために、C++言語とピソン言語の両方を含む4つのデータセットで様々な実験と改善が行われた。
論文 参考訳(メタデータ) (2024-05-03T02:48:55Z) - AdaCCD: Adaptive Semantic Contrasts Discovery Based Cross Lingual
Adaptation for Code Clone Detection [69.79627042058048]
AdaCCDは、その言語でアノテーションを使わずに、新しい言語のクローンコードを検出する新しい言語間適応手法である。
5つのプログラミング言語からなる多言語コードクローン検出ベンチマークを構築し,AdaCCDの言語間適応性を評価する。
論文 参考訳(メタデータ) (2023-11-13T12:20:48Z) - Multilingual Code Co-Evolution Using Large Language Models [45.083171710527985]
あるプログラミング言語から別のプログラミング言語へのコード変更の翻訳は、開発者の作業方法ではない。
Codeditorは、明示的にコード変更を編集としてモデル化し、プログラミング言語間で変更を関連付けることを学習する。
Codeditorは、一般的に使用されるすべての自動メトリクスに対して、最先端のアプローチを大きなマージンで上回る。
論文 参考訳(メタデータ) (2023-07-27T16:37:30Z) - SLaDe: A Portable Small Language Model Decompiler for Optimized Assembly [6.080751346188323]
本稿では,実世界のコード上で訓練されたシーケンス・ツー・シーケンス・トランスフォーマをベースとした小型言語モデルデコンパイラであるSLaDeを提案する。
型推論を利用して、標準的な分析や最近のニューラルアプローチよりも読みやすく正確なプログラムを生成する。
論文 参考訳(メタデータ) (2023-05-21T17:31:39Z) - Teaching Large Language Models to Self-Debug [62.424077000154945]
大規模言語モデル(LLM)は、コード生成において素晴らしいパフォーマンスを達成した。
本稿では,大規模言語モデルで予測プログラムを数発のデモでデバッグする自己デバッグを提案する。
論文 参考訳(メタデータ) (2023-04-11T10:43:43Z) - Fault-Aware Neural Code Rankers [64.41888054066861]
サンプルプログラムの正しさを予測できる故障認識型ニューラルネットワークローダを提案する。
我々のフォールト・アウェア・ローダは、様々なコード生成モデルのpass@1精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-06-04T22:01:05Z) - Natural Language to Code Translation with Execution [82.52142893010563]
実行結果-プログラム選択のための最小ベイズリスク復号化。
そこで本研究では,自然言語からコードへのタスクにおいて,事前訓練されたコードモデルの性能を向上することを示す。
論文 参考訳(メタデータ) (2022-04-25T06:06:08Z) - Compilable Neural Code Generation with Compiler Feedback [43.97362484564799]
本稿では、言語モデルの微調整、コンパイル可能性強化、コンパイル可能性判定を含む、コンパイル可能なコード生成のための3段階パイプラインを提案する。
2つのコード生成タスクの実験は,提案手法の有効性を示し,平均44.18から89.18に,テキスト・コード生成では70.3から96.2に向上した。
論文 参考訳(メタデータ) (2022-03-10T03:15:17Z) - AVATAR: A Parallel Corpus for Java-Python Program Translation [77.86173793901139]
プログラム翻訳とは、ある言語から別の言語へソースコードを移行することを指す。
AVATARは9,515のプログラミング問題とそのソリューションをJavaとPythonという2つの人気のある言語で記述したものです。
論文 参考訳(メタデータ) (2021-08-26T05:44:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。