論文の概要: Using ChatGPT to Score Essays and Short-Form Constructed Responses
- arxiv url: http://arxiv.org/abs/2408.09540v1
- Date: Sun, 18 Aug 2024 16:51:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 18:24:47.946712
- Title: Using ChatGPT to Score Essays and Short-Form Constructed Responses
- Title(参考訳): ChatGPTによるスコア評価と短時間構成応答
- Authors: Mark D. Shermis,
- Abstract要約: 線形回帰、ランダム森林、勾配上昇、隆起など、様々な予測モデルに焦点をあてた調査。
2次重み付きカッパ(QWK)測定値を用いてChatGPTの性能評価を行った。
研究は、ChatGPTは人間のスコアを補完するが、高い評価を得るためにはさらなる開発が必要であると結論付けている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study aimed to determine if ChatGPT's large language models could match the scoring accuracy of human and machine scores from the ASAP competition. The investigation focused on various prediction models, including linear regression, random forest, gradient boost, and boost. ChatGPT's performance was evaluated against human raters using quadratic weighted kappa (QWK) metrics. Results indicated that while ChatGPT's gradient boost model achieved QWKs close to human raters for some data sets, its overall performance was inconsistent and often lower than human scores. The study highlighted the need for further refinement, particularly in handling biases and ensuring scoring fairness. Despite these challenges, ChatGPT demonstrated potential for scoring efficiency, especially with domain-specific fine-tuning. The study concludes that ChatGPT can complement human scoring but requires additional development to be reliable for high-stakes assessments. Future research should improve model accuracy, address ethical considerations, and explore hybrid models combining ChatGPT with empirical methods.
- Abstract(参考訳): 本研究の目的は、ChatGPTの大規模言語モデルが、ASAPコンペティションの人間と機械のスコアの精度と一致するかどうかを判定することであった。
この調査は、線形回帰、ランダム森林、勾配上昇、隆起など、様々な予測モデルに焦点を当てた。
2次重み付きカッパ(QWK)測定値を用いてChatGPTの性能評価を行った。
結果,ChatGPTの勾配上昇モデルでは,人間のレーダに近いQWKが得られたが,全体の性能は不整合であり,人間のスコアよりも低かった。
この研究は、特にバイアスの扱いと公平性の確保において、さらなる改善の必要性を強調した。
これらの課題にもかかわらず、ChatGPTは、特にドメイン固有の微調整において、効率を評価する可能性を示した。
この研究は、ChatGPTは人間のスコアを補完するが、高い評価を得るためにはさらなる開発が必要であると結論付けている。
今後の研究は、モデル精度の向上、倫理的考察への取り組み、ChatGPTと経験的手法を組み合わせたハイブリッドモデルの研究である。
関連論文リスト
- Is ChatGPT the Future of Causal Text Mining? A Comprehensive Evaluation
and Analysis [8.031131164056347]
本研究はChatGPTの因果テキストマイニング機能に関する総合的な評価を行う。
一般的な英語データセットを超えて拡張するベンチマークを導入する。
また、ChatGPTと従来のアプローチとの公正な比較を保証するための評価フレームワークも提供する。
論文 参考訳(メタデータ) (2024-02-22T12:19:04Z) - ChatGPT for Suicide Risk Assessment on Social Media: Quantitative
Evaluation of Model Performance, Potentials and Limitations [5.8762433393846045]
本稿では,ソーシャルメディア投稿からの自殺評価の文脈において,対話型ChatGPTモデルを評価するための枠組みを提案する。
我々はZero-ShotとFew-Shot実験を用いてChatGPTの性能の技術的評価を行う。
以上の結果から,ChatGPTの精度は高いが,人間の注釈付きデータセットを微調整したトランスフォーマーモデルの方が優れた性能を示した。
論文 参考訳(メタデータ) (2023-06-15T16:01:30Z) - Large Language Models are not Fair Evaluators [60.27164804083752]
候補回答の品質ランキングは,文脈の出現順序を変えることで容易にハックできることがわかった。
この操作により、評価結果をスキューし、一方のモデルを他方よりもかなり優れているようにすることができる。
この問題を緩和するための3つのシンプルかつ効果的な戦略を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T07:41:03Z) - Distilling ChatGPT for Explainable Automated Student Answer Assessment [19.604476650824516]
本稿では,最先端の大規模言語モデルであるChatGPTを用いて,学生の回答スコアリングと合理性生成の同時タスクを探索する新しいフレームワークを提案する。
提案手法は,ChatGPTと比較してQWK全体のスコアを11%改善することを示した。
論文 参考訳(メタデータ) (2023-05-22T12:11:39Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
本研究は,ChatGPT検出における最新の手法を包括的かつ現代的に評価するものである。
我々は、ChatGPTと人間からのプロンプトからなるベンチマークデータセットをキュレートし、医療、オープンQ&A、ファイナンスドメインからの多様な質問を含む。
評価の結果,既存の手法ではChatGPT生成内容を効果的に検出できないことがわかった。
論文 参考訳(メタデータ) (2023-04-04T03:04:28Z) - Exploring ChatGPT's Ability to Rank Content: A Preliminary Study on
Consistency with Human Preferences [6.821378903525802]
ChatGPTは、コンテンツ評価における精度と信頼性の顕著なレベルを一貫して証明している。
幅広いユースケースをカバーするプロンプトからなるテストセットを作成し、5つのモデルを使用して対応する応答を生成する。
テストセットの結果は、ChatGPTのランク設定が人間とある程度一致していることを示している。
論文 参考訳(メタデータ) (2023-03-14T03:13:02Z) - Consistency Analysis of ChatGPT [65.268245109828]
本稿では,ChatGPTとGPT-4の論理的一貫した行動に対する信頼性について検討する。
その結果,両モデルとも言語理解能力と推論能力が向上しているように見えるが,論理的に一貫した予測が得られないことが示唆された。
論文 参考訳(メタデータ) (2023-03-11T01:19:01Z) - Is ChatGPT a Good NLG Evaluator? A Preliminary Study [121.77986688862302]
NLG測定値として信頼性を示すため,ChatGPTのメタ評価を行った。
実験の結果,ChatGPTは従来の自動測定値と比較して,人間の判断と最先端あるいは競合的な相関を達成できた。
我々の予備研究は、汎用的な信頼性のあるNLGメトリックの出現を促すことを願っている。
論文 参考訳(メタデータ) (2023-03-07T16:57:20Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
チャットGPTは、人間の質問に対する流動的で高品質な応答を生成できるため、大きな注目を集めている。
そこで我々は,ChatGPTの理解能力を,最も人気のあるGLUEベンチマークで評価し,より詳細な4種類のBERTスタイルのモデルと比較した。
2)ChatGPTは,感情分析や質問応答タスクにおいて,BERTと同等のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-02-19T12:29:33Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。