TESL-Net: A Transformer-Enhanced CNN for Accurate Skin Lesion Segmentation
- URL: http://arxiv.org/abs/2408.09687v1
- Date: Mon, 19 Aug 2024 03:49:48 GMT
- Title: TESL-Net: A Transformer-Enhanced CNN for Accurate Skin Lesion Segmentation
- Authors: Shahzaib Iqbal, Muhammad Zeeshan, Mehwish Mehmood, Tariq M. Khan, Imran Razzak,
- Abstract summary: Early detection of skin cancer relies on precise segmentation of dermoscopic images of skin lesions.
Recent methods for melanoma segmentation are U-Nets and fully connected networks (FCNs)
We introduce a novel network named TESL-Net for the segmentation of skin lesions.
- Score: 9.077654650104057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early detection of skin cancer relies on precise segmentation of dermoscopic images of skin lesions. However, this task is challenging due to the irregular shape of the lesion, the lack of sharp borders, and the presence of artefacts such as marker colours and hair follicles. Recent methods for melanoma segmentation are U-Nets and fully connected networks (FCNs). As the depth of these neural network models increases, they can face issues like the vanishing gradient problem and parameter redundancy, potentially leading to a decrease in the Jaccard index of the segmentation model. In this study, we introduced a novel network named TESL-Net for the segmentation of skin lesions. The proposed TESL-Net involves a hybrid network that combines the local features of a CNN encoder-decoder architecture with long-range and temporal dependencies using bi-convolutional long-short-term memory (Bi-ConvLSTM) networks and a Swin transformer. This enables the model to account for the uncertainty of segmentation over time and capture contextual channel relationships in the data. We evaluated the efficacy of TESL-Net in three commonly used datasets (ISIC 2016, ISIC 2017, and ISIC 2018) for the segmentation of skin lesions. The proposed TESL-Net achieves state-of-the-art performance, as evidenced by a significantly elevated Jaccard index demonstrated by empirical results.
Related papers
- TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
We introduce a novel deep learning architecture for medical image segmentation.
Our proposed model shows consistent improvement over the state of the art on ten publicly available datasets.
arXiv Detail & Related papers (2024-09-05T09:14:03Z) - LSSF-Net: Lightweight Segmentation with Self-Awareness, Spatial Attention, and Focal Modulation [8.566930077350184]
We propose a novel lightweight network specifically designed for skin lesion segmentation utilizing mobile devices.
Our network comprises an encoder-decoder architecture that incorporates conformer-based focal modulation attention, self-aware local and global spatial attention, and split channel-shuffle.
Empirical findings substantiate its state-of-the-art performance, notably reflected in a high Jaccard index.
arXiv Detail & Related papers (2024-09-03T03:06:32Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Attention Swin U-Net: Cross-Contextual Attention Mechanism for Skin
Lesion Segmentation [4.320393382724066]
We propose Att-SwinU-Net, an attention-based Swin U-Net extension, for medical image segmentation.
We argue that the classical concatenation operation utilized in the skip connection path can be further improved by incorporating an attention mechanism.
arXiv Detail & Related papers (2022-10-30T17:41:35Z) - Lesion Net -- Skin Lesion Segmentation Using Coordinate Convolution and
Deep Residual Units [18.908448254745473]
The accuracy of segmenting melanomas skin lesions is quite a challenging task due to less data for training, irregular shapes, unclear boundaries, and different skin colors.
Our proposed approach helps in improving the accuracy of skin lesion segmentation.
The results show that the proposed model either outperform or at par with the existing skin lesion segmentation methods.
arXiv Detail & Related papers (2020-12-28T14:43:04Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - Cascaded Context Enhancement Network for Automatic Skin Lesion
Segmentation [10.648218637920035]
We formulate a cascaded context enhancement neural network for automatic skin lesion segmentation.
A new context aggregation module with a gate-based information integration approach is proposed.
We evaluate our approach on four public skin dermoscopy image datasets.
arXiv Detail & Related papers (2020-04-17T08:25:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.