論文の概要: Bridging the Language Gap: Enhancing Multilingual Prompt-Based Code Generation in LLMs via Zero-Shot Cross-Lingual Transfer
- arxiv url: http://arxiv.org/abs/2408.09701v1
- Date: Mon, 19 Aug 2024 05:11:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 17:34:18.832948
- Title: Bridging the Language Gap: Enhancing Multilingual Prompt-Based Code Generation in LLMs via Zero-Shot Cross-Lingual Transfer
- Title(参考訳): 言語ギャップのブリッジ:ゼロショットクロスリンガル転送によるLLMにおける多言語プロンプトベースコード生成の強化
- Authors: Mingda Li, Abhijit Mishra, Utkarsh Mujumdar,
- Abstract要約: 本稿では,多言語プロンプトベースのコード生成の複雑さについて検討する。
評価の結果,非英語のプロンプトにおけるコード品質の相違が明らかとなった。
本稿では,ニューラルプロジェクション手法を用いたゼロショット言語間アプローチを提案する。
- 参考スコア(独自算出の注目度): 5.355430735475281
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The use of Large Language Models (LLMs) for program code generation has gained substantial attention, but their biases and limitations with non-English prompts challenge global inclusivity. This paper investigates the complexities of multilingual prompt-based code generation. Our evaluations of LLMs, including CodeLLaMa and CodeGemma, reveal significant disparities in code quality for non-English prompts; we also demonstrate the inadequacy of simple approaches like prompt translation, bootstrapped data augmentation, and fine-tuning. To address this, we propose a zero-shot cross-lingual approach using a neural projection technique, integrating a cross-lingual encoder like LASER artetxe2019massively to map multilingual embeddings from it into the LLM's token space. This method requires training only on English data and scales effectively to other languages. Results on a translated and quality-checked MBPP dataset show substantial improvements in code quality. This research promotes a more inclusive code generation landscape by empowering LLMs with multilingual capabilities to support the diverse linguistic spectrum in programming.
- Abstract(参考訳): プログラムコード生成におけるLarge Language Models (LLMs)の使用は注目されているが、非英語によるバイアスや制限は、世界的な傾きに挑戦している。
本稿では,多言語プロンプトベースのコード生成の複雑さについて検討する。
CodeLLaMa や CodeGemma など LLM の評価では,非英語のプロンプトに対するコード品質の相違が顕著である。
そこで我々は, RAER artetxe2019のような多言語エンコーダを多言語埋め込みをLLMのトークン空間にマッピングするために, ニューラルプロジェクション技術を用いてゼロショットのクロスランガルアプローチを提案する。
この方法は、英語のデータのみをトレーニングし、他の言語に効果的にスケールする必要がある。
翻訳および品質チェックされたMBPPデータセットの結果は、コード品質を大幅に改善したことを示している。
本研究は,LLMを多言語機能で活用し,プログラミングにおける多様な言語スペクトルをサポートすることによって,より包括的なコード生成の展望を促進する。
関連論文リスト
- Code-mixed LLM: Improve Large Language Models' Capability to Handle Code-Mixing through Reinforcement Learning from AI Feedback [11.223762031003671]
コードミキシングは、構文ミスマッチやセマンティックブレンディングなど、日常生活におけるユニークな課題を導入している。
大規模言語モデル(LLM)は、人間の言語を理解するのに前例のない能力を提供することによって、自然言語処理(NLP)の分野に革命をもたらした。
本稿では,人間フィードバック(RLHF)とコード混合機械翻訳タスクの強化学習を通じて,多言語LLMのコードミキシング理解能力を改善することを提案する。
論文 参考訳(メタデータ) (2024-11-13T22:56:00Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP [13.662528492286528]
本稿では,この課題に対処し,より効率的な言語適応を実現するために,新たな言語間語彙移動戦略であるトランストークン化を提案する。
提案手法は,ソースコードからの意味論的に類似したトークン埋め込みの重み付け平均を用いて,ターゲット言語のトークン埋め込みを初期化することにより,高リソースのモノリンガルLLMを未知のターゲット言語に適応することに焦点を当てる。
複数のスワップ可能な言語モデリングヘッドと埋め込みテーブルを備えたモデルであるHydra LLMを導入し、トランストークン化戦略の能力をさらに拡張した。
論文 参考訳(メタデータ) (2024-08-08T08:37:28Z) - Multilingual Large Language Models and Curse of Multilinguality [4.096453902709292]
大規模言語モデル(LLM)は自然言語処理(NLP)の研究者や実践者の間で広く普及している。
本稿では,多言語LLMの展望を概観し,その技術的側面について概観する。
基礎となるアーキテクチャ、客観的関数、事前トレーニングされたデータソース、トークン化メソッドを説明します。
論文 参考訳(メタデータ) (2024-06-15T11:31:39Z) - UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
オープンソースの大規模言語モデル(LLM)は、様々な分野において大きな強みを持っている。
本研究では,オープンソースの多言語教師付き微調整データセットを構築する。
結果として得られたUltraLinkデータセットは、5つの言語にわたる約100万のサンプルで構成されている。
論文 参考訳(メタデータ) (2024-02-07T05:05:53Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
この問題を解決するためにCIPHER(Communicative Inter-Model Protocol Through Embedding Representation)を導入する。
自然言語から逸脱することで、CIPHERはモデルの重みを変更することなく、より広い範囲の情報を符号化する利点を提供する。
このことは、LLM間の通信における代替の"言語"としての埋め込みの優越性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-10-10T03:06:38Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - ERNIE-Code: Beyond English-Centric Cross-lingual Pretraining for
Programming Languages [37.60016772021422]
同じプログラミング言語(PL)を扱うソフトウェアエンジニアは、異なる自然言語(NL)を話し、その逆も話す。
近年の研究では、コンピュータプログラムにおける生成前訓練の有効性が実証されているが、それらは常に英語中心である。
ERNIE-Codeは116個のNLと6個のPLのための統合事前学習言語モデルである。
論文 参考訳(メタデータ) (2022-12-13T17:21:44Z) - Multi-level Contrastive Learning for Cross-lingual Spoken Language
Understanding [90.87454350016121]
コントラスト学習のための難解なサンプルを, あらゆるレベルで生成するコードスイッチング手法を開発した。
言語間知識伝達にラベルセマンティクスを利用するラベル認識ジョイントモデルを開発した。
論文 参考訳(メタデータ) (2022-05-07T13:44:28Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。