論文の概要: Partial-Multivariate Model for Forecasting
- arxiv url: http://arxiv.org/abs/2408.09703v1
- Date: Mon, 19 Aug 2024 05:18:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 17:34:18.827906
- Title: Partial-Multivariate Model for Forecasting
- Title(参考訳): 予測のための部分多変量モデル
- Authors: Jaehoon Lee, Hankook Lee, Sungik Choi, Sungjun Cho, Moontae Lee,
- Abstract要約: 本稿では,問題予測のためのトランスフォーマーに基づく部分多変量モデルPMformerを提案する。
PMformerは様々な単変量モデルと完全多変量モデルより優れていることを示す。
また、PMformerの他の利点として、機能不足による効率性と堅牢性を強調します。
- 参考スコア(独自算出の注目度): 28.120094495344453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When solving forecasting problems including multiple time-series features, existing approaches often fall into two extreme categories, depending on whether to utilize inter-feature information: univariate and complete-multivariate models. Unlike univariate cases which ignore the information, complete-multivariate models compute relationships among a complete set of features. However, despite the potential advantage of leveraging the additional information, complete-multivariate models sometimes underperform univariate ones. Therefore, our research aims to explore a middle ground between these two by introducing what we term Partial-Multivariate models where a neural network captures only partial relationships, that is, dependencies within subsets of all features. To this end, we propose PMformer, a Transformer-based partial-multivariate model, with its training algorithm. We demonstrate that PMformer outperforms various univariate and complete-multivariate models, providing a theoretical rationale and empirical analysis for its superiority. Additionally, by proposing an inference technique for PMformer, the forecasting accuracy is further enhanced. Finally, we highlight other advantages of PMformer: efficiency and robustness under missing features.
- Abstract(参考訳): 複数の時系列特徴を含む予測問題を解く際、既存のアプローチは、特徴間の情報を利用するかどうかによって、しばしば2つの極端なカテゴリに分類される:単変量モデルと完全多変量モデル。
情報を無視した単変数の場合とは異なり、完全多変数モデルは完全な特徴セット間の関係を計算する。
しかし、付加的な情報を活用する潜在的な利点にもかかわらず、完全多変量モデルは時に単変量モデルに劣る。
そこで本研究では,ニューラルネットワークがすべての特徴のサブセット内の部分的関係,すなわち部分的関係のみをキャプチャする部分的多変量モデル(partial-Multivariate model)と呼ばれるモデルを導入することによって,この2つの中間領域を探索することを目的とする。
そこで本研究では,トランスフォーマーを用いた部分多変量モデルPMformerとそのトレーニングアルゴリズムを提案する。
我々はPMformerが様々な単変量モデルと完全多変量モデルより優れており、その優越性に対する理論的理論的根拠と経験的分析を提供することを示した。
また、PMformerの推論手法を提案することにより、予測精度をさらに向上する。
最後に、PMformerの他の利点として、機能不足による効率性と堅牢性を強調します。
関連論文リスト
- Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
文脈決定プロセス(CMDP)は、遷移カーネルと報酬関数がコンテキスト変数によってインデックス付けされた異なるMDPで時間とともに変化できる強化学習のクラスを記述する。
CMDPは、時間とともに変化する環境で多くの現実世界のアプリケーションをモデル化するための重要なフレームワークとして機能する。
CMDPを2つの線形関数近似モデルで検討する: 文脈変化表現とすべての文脈に対する共通線形重み付きモデルIと、すべての文脈に対する共通表現と文脈変化線形重み付きモデルIIである。
論文 参考訳(メタデータ) (2024-02-05T03:25:04Z) - Learning multi-modal generative models with permutation-invariant encoders and tighter variational objectives [5.549794481031468]
マルチモーダルデータに対する深い潜伏変数モデルの開発は、機械学習研究において長年のテーマであった。
本研究では,データログ類似度を厳密に近似できる変動目標について考察する。
我々は,PoE や MoE のアプローチにおける帰納バイアスを回避するために,より柔軟なアグリゲーション手法を開発した。
論文 参考訳(メタデータ) (2023-09-01T10:32:21Z) - Generative machine learning methods for multivariate ensemble
post-processing [2.266704492832475]
生成機械学習に基づく非パラメトリックなデータ駆動分散回帰モデルを提案する。
2つのケーススタディにおいて、我々の生成モデルは最先端の手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-09-26T09:02:30Z) - CAMul: Calibrated and Accurate Multi-view Time-Series Forecasting [70.54920804222031]
本稿では,一般的な確率的マルチビュー予測フレームワークであるCAMulを提案する。
多様なデータソースから表現と不確実性を学ぶことができる。
動的コンテキスト固有の方法で、各データビューからの知識と不確実性を統合する。
CAMulは、他の最先端確率予測モデルよりも精度とキャリブレーションが25%以上向上していることを示す。
論文 参考訳(メタデータ) (2021-09-15T17:13:47Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
多視点問題は潜在変数モデルに直面することができる。
高次元問題と非線形問題は伝統的にカーネルメソッドによって扱われる。
両アプローチを単一モデルにマージすることを提案する。
論文 参考訳(メタデータ) (2020-06-01T14:25:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。