論文の概要: Towards Few-Shot Learning in the Open World: A Review and Beyond
- arxiv url: http://arxiv.org/abs/2408.09722v1
- Date: Mon, 19 Aug 2024 06:23:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 17:24:19.951870
- Title: Towards Few-Shot Learning in the Open World: A Review and Beyond
- Title(参考訳): オープンワールドでのFew-Shot学習に向けて: レビューとその先
- Authors: Hui Xue, Yuexuan An, Yongchun Qin, Wenqian Li, Yixin Wu, Yongjuan Che, Pengfei Fang, Minling Zhang,
- Abstract要約: 少ないショット学習は、人間の知性を模倣し、大きな一般化と伝達性を実現することを目的としている。
本稿では,FSLをオープンワールド環境に適用するための最近の進歩について概説する。
既存の手法は,3つの異なるタイプのオープンワールド・マイクロショット・ラーニングに分類する。
- 参考スコア(独自算出の注目度): 52.41344813375177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human intelligence is characterized by our ability to absorb and apply knowledge from the world around us, especially in rapidly acquiring new concepts from minimal examples, underpinned by prior knowledge. Few-shot learning (FSL) aims to mimic this capacity by enabling significant generalizations and transferability. However, traditional FSL frameworks often rely on assumptions of clean, complete, and static data, conditions that are seldom met in real-world environments. Such assumptions falter in the inherently uncertain, incomplete, and dynamic contexts of the open world. This paper presents a comprehensive review of recent advancements designed to adapt FSL for use in open-world settings. We categorize existing methods into three distinct types of open-world few-shot learning: those involving varying instances, varying classes, and varying distributions. Each category is discussed in terms of its specific challenges and methods, as well as its strengths and weaknesses. We standardize experimental settings and metric benchmarks across scenarios, and provide a comparative analysis of the performance of various methods. In conclusion, we outline potential future research directions for this evolving field. It is our hope that this review will catalyze further development of effective solutions to these complex challenges, thereby advancing the field of artificial intelligence.
- Abstract(参考訳): 人間の知性は、私たちの周りの世界の知識を吸収し、応用する能力によって特徴づけられる。
FSL(Few-shot Learning)は、この能力を大いに一般化し、伝達可能性を高めることを目的としている。
しかし、従来のFSLフレームワークはクリーンで完全で静的なデータという前提に頼っていることが多い。
このような仮定は、開世界の本質的に不確かで不完全で、動的文脈において不確実である。
本稿では,FSLをオープンワールド環境に適用するための最近の進歩について概説する。
既存の手法は,3つの異なるタイプのオープンワールド・マイクロショット・ラーニングに分類する。
各カテゴリは、その特定の課題と方法、およびその強さと弱点の観点から議論される。
シナリオ間で実験的な設定とメトリクスベンチマークを標準化し、様々な手法の性能の比較分析を行う。
結論として、この発展途上分野の今後の研究方向性について概説する。
このレビューがこれらの複雑な課題に対する効果的な解決策をさらに発展させ、人工知能の分野を前進させることを願っている。
関連論文リスト
- A Unified and General Framework for Continual Learning [58.72671755989431]
継続学習(CL)は、以前取得した知識を維持しながら、動的かつ変化するデータ分布から学ぶことに焦点を当てている。
正規化ベース、ベイズベース、メモリ再生ベースなど、破滅的な忘れ込みの課題に対処する様々な手法が開発されている。
本研究の目的は,既存の方法論を包含し,整理する包括的かつ包括的な枠組みを導入することで,このギャップを埋めることである。
論文 参考訳(メタデータ) (2024-03-20T02:21:44Z) - Open-world Machine Learning: A Review and New Outlooks [83.6401132743407]
本稿では,新たなオープンワールド機械学習パラダイムを包括的に紹介することを目的としている。
研究者がそれぞれの分野でより強力なAIシステムを構築するのを支援し、人工知能の開発を促進することを目的としている。
論文 参考訳(メタデータ) (2024-03-04T06:25:26Z) - BOWLL: A Deceptively Simple Open World Lifelong Learner [22.375833943808995]
本稿では,オープンワールドの生涯学習のための標準モデルを再活用する,極めてシンプルで効果的な方法を提案する。
我々のアプローチは、知識を効果的に維持し、情報的データに選択的に集中し、将来の学習を加速できるモデルの将来の標準として機能するべきです。
論文 参考訳(メタデータ) (2024-02-07T13:04:35Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
大規模言語モデル(LLM)は、人間のコミュニケーションを忠実に反映したテキストの理解と生成の素晴らしい能力を示している。
本稿では,知識編集の問題を定義し,最先端アプローチの包括的レビューを行う。
我々は,代表的知識編集アプローチの総合的評価のための新しいベンチマークであるKnowEditを紹介した。
論文 参考訳(メタデータ) (2024-01-02T16:54:58Z) - Detecting and Learning Out-of-Distribution Data in the Open world:
Algorithm and Theory [15.875140867859209]
この論文は、特にオープンワールドシナリオのコンテキストにおいて、機械学習の領域に貢献する。
オープンワールド機械学習に不可欠な2つの段階:アウト・オブ・ディストリビューション(OOD)検出とオープンワールド表現学習(ORL)
論文 参考訳(メタデータ) (2023-10-10T00:25:21Z) - Open Environment Machine Learning [84.90891046882213]
従来の機械学習研究は、学習プロセスの重要な要素が不変であるような近世界のシナリオを想定している。
本稿では,新しいクラスを創出する技術,デクリメンタル/インクリメンタルな特徴,データ分散の変化,学習目標の変化,理論的諸問題について概説する。
論文 参考訳(メタデータ) (2022-06-01T11:57:56Z) - A Comprehensive Survey of Few-shot Learning: Evolution, Applications,
Challenges, and Opportunities [5.809416101410813]
効果的な学習方法としてショットラーニングが登場し、大きな可能性を秘めている。
我々は過去3年間に発行されたFSLに関する200以上の最新の論文を広範囲に調査した。
本稿では,知識の抽象化レベルに応じて既存の作業を分類する新しい分類法を提案する。
論文 参考訳(メタデータ) (2022-05-13T16:24:35Z) - Bayesian Embeddings for Few-Shot Open World Recognition [60.39866770427436]
埋め込みベースの数ショット学習アルゴリズムをオープンワールド認識設定に拡張する。
当社のフレームワークは,MiniImageNetとTieredImageNetによる数ショット学習データセットのオープンワールド拡張をベンチマークする。
論文 参考訳(メタデータ) (2021-07-29T00:38:47Z) - A Review of Open-World Learning and Steps Toward Open-World Learning
Without Labels [11.380522815465984]
オープンワールド学習では、エージェントは既知のクラスのセットから始まり、知らないものを検出し、管理し、静止しないデータストリームから時間をかけて学習する。
本稿では,ラベルなしのオープンワールド学習を含む,様々なオープンワールド学習問題を定式化する。
論文 参考訳(メタデータ) (2020-11-25T17:41:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。