ALTBI: Constructing Improved Outlier Detection Models via Optimization of Inlier-Memorization Effect
- URL: http://arxiv.org/abs/2408.09791v1
- Date: Mon, 19 Aug 2024 08:40:53 GMT
- Title: ALTBI: Constructing Improved Outlier Detection Models via Optimization of Inlier-Memorization Effect
- Authors: Seoyoung Cho, Jaesung Hwang, Kwan-Young Bak, Dongha Kim,
- Abstract summary: Outlier detection (OD) is the task of identifying unusual observations (or outliers) from a given or upcoming data.
Inlier-memorization (IM) effect suggests that generative models memorize inliers before outliers in early learning stages.
We propose a theoretically principled method to address UOD tasks by maximally utilizing the IM effect.
- Score: 2.3961612657966946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Outlier detection (OD) is the task of identifying unusual observations (or outliers) from a given or upcoming data by learning unique patterns of normal observations (or inliers). Recently, a study introduced a powerful unsupervised OD (UOD) solver based on a new observation of deep generative models, called inlier-memorization (IM) effect, which suggests that generative models memorize inliers before outliers in early learning stages. In this study, we aim to develop a theoretically principled method to address UOD tasks by maximally utilizing the IM effect. We begin by observing that the IM effect is observed more clearly when the given training data contain fewer outliers. This finding indicates a potential for enhancing the IM effect in UOD regimes if we can effectively exclude outliers from mini-batches when designing the loss function. To this end, we introduce two main techniques: 1) increasing the mini-batch size as the model training proceeds and 2) using an adaptive threshold to calculate the truncated loss function. We theoretically show that these two techniques effectively filter out outliers from the truncated loss function, allowing us to utilize the IM effect to the fullest. Coupled with an additional ensemble strategy, we propose our method and term it Adaptive Loss Truncation with Batch Increment (ALTBI). We provide extensive experimental results to demonstrate that ALTBI achieves state-of-the-art performance in identifying outliers compared to other recent methods, even with significantly lower computation costs. Additionally, we show that our method yields robust performances when combined with privacy-preserving algorithms.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
We introduce a novel training data attribution method called Debias and Denoise Attribution (DDA)
Our method significantly outperforms existing approaches, achieving an averaged AUC of 91.64%.
DDA exhibits strong generality and scalability across various sources and different-scale models like LLaMA2, QWEN2, and Mistral.
arXiv Detail & Related papers (2024-10-02T07:14:26Z) - Class Incremental Learning for Adversarial Robustness [17.06592851567578]
Adrial training integrates adversarial examples during model training to enhance robustness.
We observe that combining incremental learning with naive adversarial training easily leads to a loss of robustness.
We propose the Flatness Preserving Distillation (FPD) loss that leverages the output difference between adversarial and clean examples.
arXiv Detail & Related papers (2023-12-06T04:38:02Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Quantile-based Maximum Likelihood Training for Outlier Detection [5.902139925693801]
We introduce a quantile-based maximum likelihood objective for learning the inlier distribution to improve the outlier separation during inference.
Our approach fits a normalizing flow to pre-trained discriminative features and detects the outliers according to the evaluated log-likelihood.
arXiv Detail & Related papers (2023-08-20T22:27:54Z) - ODIM: Outlier Detection via Likelihood of Under-Fitted Generative Models [4.956259629094216]
unsupervised outlier detection (UOD) problem refers to a task to identify inliers given training data which contain outliers as well as inliers.
We develop a new method called the outlier detection via the IM effect (ODIM)
Remarkably, the ODIM requires only a few updates, making it computationally efficient at least tens of times faster than other deep-learning-based algorithms.
arXiv Detail & Related papers (2023-01-11T01:02:27Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - A Simple but Tough-to-Beat Data Augmentation Approach for Natural
Language Understanding and Generation [53.8171136907856]
We introduce a set of simple yet effective data augmentation strategies dubbed cutoff.
cutoff relies on sampling consistency and thus adds little computational overhead.
cutoff consistently outperforms adversarial training and achieves state-of-the-art results on the IWSLT2014 German-English dataset.
arXiv Detail & Related papers (2020-09-29T07:08:35Z) - Hierarchical and Efficient Learning for Person Re-Identification [19.172946887940874]
We propose a novel Hierarchical and Efficient Network (HENet) that learns hierarchical global, partial, and recovery features ensemble under the supervision of multiple loss combinations.
We also propose a new dataset augmentation approach, dubbed Random Polygon Erasing (RPE), to random erase irregular area of the input image for imitating the body part missing.
arXiv Detail & Related papers (2020-05-18T15:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.