Quantile-based Maximum Likelihood Training for Outlier Detection
- URL: http://arxiv.org/abs/2310.06085v3
- Date: Sun, 2 Jun 2024 20:12:11 GMT
- Title: Quantile-based Maximum Likelihood Training for Outlier Detection
- Authors: Masoud Taghikhah, Nishant Kumar, Siniša Šegvić, Abouzar Eslami, Stefan Gumhold,
- Abstract summary: We introduce a quantile-based maximum likelihood objective for learning the inlier distribution to improve the outlier separation during inference.
Our approach fits a normalizing flow to pre-trained discriminative features and detects the outliers according to the evaluated log-likelihood.
- Score: 5.902139925693801
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discriminative learning effectively predicts true object class for image classification. However, it often results in false positives for outliers, posing critical concerns in applications like autonomous driving and video surveillance systems. Previous attempts to address this challenge involved training image classifiers through contrastive learning using actual outlier data or synthesizing outliers for self-supervised learning. Furthermore, unsupervised generative modeling of inliers in pixel space has shown limited success for outlier detection. In this work, we introduce a quantile-based maximum likelihood objective for learning the inlier distribution to improve the outlier separation during inference. Our approach fits a normalizing flow to pre-trained discriminative features and detects the outliers according to the evaluated log-likelihood. The experimental evaluation demonstrates the effectiveness of our method as it surpasses the performance of the state-of-the-art unsupervised methods for outlier detection. The results are also competitive compared with a recent self-supervised approach for outlier detection. Our work allows to reduce dependency on well-sampled negative training data, which is especially important for domains like medical diagnostics or remote sensing.
Related papers
- Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
We propose a novel method named Regularized Contrastive Partial Multi-view Outlier Detection (RCPMOD)
In this framework, we utilize contrastive learning to learn view-consistent information and distinguish outliers by the degree of consistency.
Experimental results on four benchmark datasets demonstrate that our proposed approach could outperform state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-02T14:34:27Z) - Outlier detection by ensembling uncertainty with negative objectness [0.0]
Outlier detection is an essential capability in safety-critical applications of supervised visual recognition.
We reconsider direct prediction of K+1 logits that correspond to K groundtruth classes and one outlier class.
We embed our method into a dense prediction architecture with mask-level recognition over K+2 classes.
arXiv Detail & Related papers (2024-02-23T15:19:37Z) - Unilaterally Aggregated Contrastive Learning with Hierarchical
Augmentation for Anomaly Detection [64.50126371767476]
We propose Unilaterally Aggregated Contrastive Learning with Hierarchical Augmentation (UniCon-HA)
We explicitly encourage the concentration of inliers and the dispersion of virtual outliers via supervised and unsupervised contrastive losses.
Our method is evaluated under three AD settings including unlabeled one-class, unlabeled multi-class, and labeled multi-class.
arXiv Detail & Related papers (2023-08-20T04:01:50Z) - Robust Outlier Rejection for 3D Registration with Variational Bayes [70.98659381852787]
We develop a novel variational non-local network-based outlier rejection framework for robust alignment.
We propose a voting-based inlier searching strategy to cluster the high-quality hypothetical inliers for transformation estimation.
arXiv Detail & Related papers (2023-04-04T03:48:56Z) - Out-of-Distribution Detection with Hilbert-Schmidt Independence
Optimization [114.43504951058796]
Outlier detection tasks have been playing a critical role in AI safety.
Deep neural network classifiers usually tend to incorrectly classify out-of-distribution (OOD) inputs into in-distribution classes with high confidence.
We propose an alternative probabilistic paradigm that is both practically useful and theoretically viable for the OOD detection tasks.
arXiv Detail & Related papers (2022-09-26T15:59:55Z) - Efficient remedies for outlier detection with variational autoencoders [8.80692072928023]
Likelihoods computed by deep generative models are a candidate metric for outlier detection with unlabeled data.
We show that a theoretically-grounded correction readily ameliorates a key bias with VAE likelihood estimates.
We also show that the variance of the likelihoods computed over an ensemble of VAEs also enables robust outlier detection.
arXiv Detail & Related papers (2021-08-19T16:00:58Z) - Unsupervised Outlier Detection using Memory and Contrastive Learning [53.77693158251706]
We think outlier detection can be done in the feature space by measuring the feature distance between outliers and inliers.
We propose a framework, MCOD, using a memory module and a contrastive learning module.
Our proposed MCOD achieves a considerable performance and outperforms nine state-of-the-art methods.
arXiv Detail & Related papers (2021-07-27T07:35:42Z) - Out-of-Scope Intent Detection with Self-Supervision and Discriminative
Training [20.242645823965145]
Out-of-scope intent detection is of practical importance in task-oriented dialogue systems.
We propose a method to train an out-of-scope intent classifier in a fully end-to-end manner by simulating the test scenario in training.
We evaluate our method extensively on four benchmark dialogue datasets and observe significant improvements over state-of-the-art approaches.
arXiv Detail & Related papers (2021-06-16T08:17:18Z) - Deep Clustering based Fair Outlier Detection [19.601280507914325]
We propose an instance-level weighted representation learning strategy to enhance the joint deep clustering and outlier detection.
Our DCFOD method consistently achieves superior performance on both the outlier detection validity and two types of fairness notions in outlier detection.
arXiv Detail & Related papers (2021-06-09T15:12:26Z) - Do We Really Need to Learn Representations from In-domain Data for
Outlier Detection? [6.445605125467574]
Methods based on the two-stage framework achieve state-of-the-art performance on this task.
We explore the possibility of avoiding the high cost of training a distinct representation for each outlier detection task.
In experiments, we demonstrate competitive or better performance on a variety of outlier detection benchmarks compared with previous two-stage methods.
arXiv Detail & Related papers (2021-05-19T17:30:28Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
Existing contrastive learning methods suffer from very low learning efficiency.
Under-clustering and over-clustering problems are major obstacles to learning efficiency.
We propose a novel self-supervised learning framework using a median triplet loss.
arXiv Detail & Related papers (2021-04-18T07:47:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.