X-TURING: Towards an Enhanced and Efficient Turing Test for Long-Term Dialogue Agents
- URL: http://arxiv.org/abs/2408.09853v2
- Date: Thu, 29 May 2025 16:08:23 GMT
- Title: X-TURING: Towards an Enhanced and Efficient Turing Test for Long-Term Dialogue Agents
- Authors: Weiqi Wu, Hongqiu Wu, Hai Zhao,
- Abstract summary: The Turing test examines whether AIs exhibit human-like behaviour in natural language conversations.<n>Traditional setting limits each participant to one message at a time and requires constant human participation.<n>This paper proposes textbftextscX-Turing, which enhances the original test with a textitburst dialogue pattern.
- Score: 56.64615470513102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Turing test examines whether AIs exhibit human-like behaviour in natural language conversations. The traditional setting limits each participant to one message at a time and requires constant human participation. This fails to reflect a natural conversational style and hinders the evaluation of dialogue agents based on Large Language Models (LLMs) in complex and prolonged interactions. This paper proposes \textbf{\textsc{X-Turing}}, which enhances the original test with a \textit{burst dialogue} pattern, allowing more dynamic exchanges using consecutive messages. It further reduces human workload by iteratively generating dialogues that simulate the long-term interaction between the agent and a human to compose the majority of the test process. With the \textit{pseudo-dialogue} history, the agent then engages in a shorter dialogue with a real human, which is paired with a human-human conversation on the same topic to be judged using questionnaires. We introduce the \textit{X-Turn Pass-Rate} metric to assess the human likeness of LLMs across varying durations. While LLMs like GPT-4 initially perform well, achieving pass rates of 51.9\% and 38.9\% during 3 turns and 10 turns of dialogues respectively, their performance drops as the dialogue progresses, which underscores the difficulty in maintaining consistency in the long term.
Related papers
- DialogueForge: LLM Simulation of Human-Chatbot Dialogue [7.038493120049631]
We propose DialogueForge as a framework for generating AI-simulated conversations in human-chatbot style.<n>To each generated conversation, DialogueForge uses seed prompts extracted from real human-chatbot interactions.<n>We evaluate the quality of the simulated conversations and compare different models using the UniEval and GTEval evaluation protocols.
arXiv Detail & Related papers (2025-07-21T16:08:19Z) - Single- vs. Dual-Prompt Dialogue Generation with LLMs for Job Interviews in Human Resources [11.083396379885478]
We compare two methods for dialogue generation for human resources job interviews.
We find that interviews generated with the dual-prompt method achieve a win rate up to ten times higher than those generated with the single-prompt method.
This difference remains consistent regardless of whether GPT-4o or Llama 3.3 70B is used for either interview generation or judging quality.
arXiv Detail & Related papers (2025-02-25T21:19:27Z) - REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation [51.97224538045096]
We introduce REALTALK, a 21-day corpus of authentic messaging app dialogues.
We compare EI attributes and persona consistency to understand the challenges posed by real-world dialogues.
Our findings reveal that models struggle to simulate a user solely from dialogue history, while fine-tuning on specific user chats improves persona emulation.
arXiv Detail & Related papers (2025-02-18T20:29:01Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
Many real dialogues are interactive, meaning an agent's utterances will influence their conversational partner, elicit information, or change their opinion.
We use this fact to rewrite and augment existing suboptimal data, and train via offline reinforcement learning (RL) an agent that outperforms both prompting and learning from unaltered human demonstrations.
Our results in a user study with real humans show that our approach greatly outperforms existing state-of-the-art dialogue agents.
arXiv Detail & Related papers (2024-11-07T21:37:51Z) - Simulating User Agents for Embodied Conversational-AI [9.402740034754455]
We build a large language model (LLM)-based user agent that can simulate user behavior during interactions with an embodied agent.
We evaluate our user agent's ability to generate human-like behaviors by comparing its simulated dialogues with the TEACh dataset.
arXiv Detail & Related papers (2024-10-31T00:56:08Z) - Fostering Natural Conversation in Large Language Models with NICO: a Natural Interactive COnversation dataset [28.076028584051617]
We introduce NICO, a Natural Interactive COnversation dataset in Chinese.
We first use GPT-4-turbo to generate dialogue drafts and make them cover 20 daily-life topics and 5 types of social interactions.
We define two dialogue-level natural conversation tasks and two sentence-level tasks for identifying and rewriting unnatural sentences.
arXiv Detail & Related papers (2024-08-18T02:06:25Z) - Stephanie: Step-by-Step Dialogues for Mimicking Human Interactions in Social Conversations [50.698517967337885]
We introduce a novel textbf-by-Step Dialogue Paradigm (Stephanie), designed to mimic the ongoing dynamic nature of human conversations.
By employing a dual learning strategy and a further-split post-editing method, we generated and utilized a high-quality step-by-step dialogue dataset.
Tailored automatic and human evaluations are conducted to assess its effectiveness compared to the traditional single-step dialogue paradigm.
arXiv Detail & Related papers (2024-07-04T17:59:41Z) - LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
We propose a goal-oriented, persona-based method to automatically generate diverse multi-turn dialogues simulating human-chatbot interaction.
Our method can simulate human-chatbot dialogues with a high indistinguishability rate.
arXiv Detail & Related papers (2024-07-04T14:49:46Z) - PSYDIAL: Personality-based Synthetic Dialogue Generation using Large Language Models [4.283022729693451]
We present a novel end-to-end personality-based synthetic dialogue data generation pipeline, specifically designed to elicit responses from large language models via prompting.
We introduce PSYDIAL, the first Korean dialogue dataset focused on personality-based dialogues, curated using our proposed pipeline.
Experimental results indicate that while pre-trained models and those fine-tuned with a chit-chat dataset struggle to generate responses reflecting personality, models trained with PSYDIAL show significant improvements.
arXiv Detail & Related papers (2024-04-01T05:19:34Z) - Evaluating Very Long-Term Conversational Memory of LLM Agents [95.84027826745609]
We introduce a machine-human pipeline to generate high-quality, very long-term dialogues.
We equip each agent with the capability of sharing and reacting to images.
The generated conversations are verified and edited by human annotators for long-range consistency.
arXiv Detail & Related papers (2024-02-27T18:42:31Z) - BotChat: Evaluating LLMs' Capabilities of Having Multi-Turn Dialogues [72.65163468440434]
This report provides a preliminary evaluation of existing large language models for human-style multi-turn chatting.
We prompt large language models (LLMs) to generate a full multi-turn dialogue based on the ChatSEED, utterance by utterance.
We find GPT-4 can generate human-style multi-turn dialogues with impressive quality, significantly outperforms its counterparts.
arXiv Detail & Related papers (2023-10-20T16:53:51Z) - Conversation Chronicles: Towards Diverse Temporal and Relational
Dynamics in Multi-Session Conversations [9.249662593315541]
We introduce a new 1M multi-session dialogue dataset, Conversation Chronicles, for implementing a long-term conversation setup.
We show that dialogue episodes in Conversation Chronicles reflect those properties while maintaining coherent and consistent interactions.
We also propose a dialogue model, called ReBot, which consists of chronological summarization and dialogue generation modules.
arXiv Detail & Related papers (2023-10-20T11:06:21Z) - PLACES: Prompting Language Models for Social Conversation Synthesis [103.94325597273316]
We use a small set of expert-written conversations as in-context examples to synthesize a social conversation dataset using prompting.
We perform several thorough evaluations of our synthetic conversations compared to human-collected conversations.
arXiv Detail & Related papers (2023-02-07T05:48:16Z) - Controllable Dialogue Simulation with In-Context Learning [39.04491297557292]
textscDialogic is a dialogue simulation method based on large language model in-context learning.
Our method can rapidly expand a small set of dialogue data with minimum or zero human involvement.
Our simulated dialogues have near-human fluency and annotation accuracy.
arXiv Detail & Related papers (2022-10-09T06:32:58Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.