Transferring Backdoors between Large Language Models by Knowledge Distillation
- URL: http://arxiv.org/abs/2408.09878v1
- Date: Mon, 19 Aug 2024 10:39:45 GMT
- Title: Transferring Backdoors between Large Language Models by Knowledge Distillation
- Authors: Pengzhou Cheng, Zongru Wu, Tianjie Ju, Wei Du, Zhuosheng Zhang Gongshen Liu,
- Abstract summary: Backdoor Attacks have been a serious vulnerability against Large Language Models (LLMs)
Previous methods only reveal such risk in specific models, or present tasks transferability after attacking the pre-trained phase.
We propose ATBA, an adaptive transferable backdoor attack, which can effectively distill the backdoor of teacher LLMs into small models.
- Score: 2.9138150728729064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Backdoor Attacks have been a serious vulnerability against Large Language Models (LLMs). However, previous methods only reveal such risk in specific models, or present tasks transferability after attacking the pre-trained phase. So, how risky is the model transferability of a backdoor attack? In this paper, we focus on whether existing mini-LLMs may be unconsciously instructed in backdoor knowledge by poisoned teacher LLMs through knowledge distillation (KD). Specifically, we propose ATBA, an adaptive transferable backdoor attack, which can effectively distill the backdoor of teacher LLMs into small models when only executing clean-tuning. We first propose the Target Trigger Generation (TTG) module that filters out a set of indicative trigger candidates from the token list based on cosine similarity distribution. Then, we exploit a shadow model to imitate the distilling process and introduce an Adaptive Trigger Optimization (ATO) module to realize a gradient-based greedy feedback to search optimal triggers. Extensive experiments show that ATBA generates not only positive guidance for student models but also implicitly transfers backdoor knowledge. Our attack is robust and stealthy, with over 80% backdoor transferability, and hopes the attention of security.
Related papers
- Unlearning Backdoor Attacks for LLMs with Weak-to-Strong Knowledge Distillation [10.888542040021962]
W2SDefense is a weak-to-strong unlearning algorithm to defend against backdoor attacks.
We conduct experiments on text classification tasks involving three state-of-the-art language models and three different backdoor attack algorithms.
arXiv Detail & Related papers (2024-10-18T12:39:32Z) - Weak-to-Strong Backdoor Attack for Large Language Models [15.055037707091435]
We propose a novel backdoor attack algorithm from weak to strong based on feature alignment-enhanced knowledge distillation (W2SAttack)
We demonstrate the superior performance of W2SAttack on classification tasks across four language models, four backdoor attack algorithms, and two different architectures of teacher models.
arXiv Detail & Related papers (2024-09-26T15:20:37Z) - MEGen: Generative Backdoor in Large Language Models via Model Editing [56.46183024683885]
Large language models (LLMs) have demonstrated remarkable capabilities.
Their powerful generative abilities enable flexible responses based on various queries or instructions.
This paper proposes an editing-based generative backdoor, named MEGen, aiming to create a customized backdoor for NLP tasks with the least side effects.
arXiv Detail & Related papers (2024-08-20T10:44:29Z) - Not All Prompts Are Secure: A Switchable Backdoor Attack Against Pre-trained Vision Transformers [51.0477382050976]
An extra prompt token, called the switch token in this work, can turn the backdoor mode on, converting a benign model into a backdoored one.
To attack a pre-trained model, our proposed attack, named SWARM, learns a trigger and prompt tokens including a switch token.
Experiments on diverse visual recognition tasks confirm the success of our switchable backdoor attack, achieving 95%+ attack success rate.
arXiv Detail & Related papers (2024-05-17T08:19:48Z) - Backdoor Removal for Generative Large Language Models [42.19147076519423]
generative large language models (LLMs) dominate various Natural Language Processing (NLP) tasks from understanding to reasoning.
A malicious adversary may publish poisoned data online and conduct backdoor attacks on the victim LLMs pre-trained on the poisoned data.
We present Simulate and Eliminate (SANDE) to erase the undesired backdoored mappings for generative LLMs.
arXiv Detail & Related papers (2024-05-13T11:53:42Z) - Does Few-shot Learning Suffer from Backdoor Attacks? [63.9864247424967]
We show that few-shot learning can still be vulnerable to backdoor attacks.
Our method demonstrates a high Attack Success Rate (ASR) in FSL tasks with different few-shot learning paradigms.
This study reveals that few-shot learning still suffers from backdoor attacks, and its security should be given attention.
arXiv Detail & Related papers (2023-12-31T06:43:36Z) - Shared Adversarial Unlearning: Backdoor Mitigation by Unlearning Shared
Adversarial Examples [67.66153875643964]
Backdoor attacks are serious security threats to machine learning models.
In this paper, we explore the task of purifying a backdoored model using a small clean dataset.
By establishing the connection between backdoor risk and adversarial risk, we derive a novel upper bound for backdoor risk.
arXiv Detail & Related papers (2023-07-20T03:56:04Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Universal Soldier: Using Universal Adversarial Perturbations for
Detecting Backdoor Attacks [15.917794562400449]
A deep learning model may be poisoned by training with backdoored data or by modifying inner network parameters.
It is difficult to distinguish between clean and backdoored models without prior knowledge of the trigger.
We propose a novel method called Universal Soldier for Backdoor detection (USB) and reverse engineering potential backdoor triggers via UAPs.
arXiv Detail & Related papers (2023-02-01T20:47:58Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
In this paper, we explore the backdoor mechanism from the angle of the model structure.
We demonstrate that the attack success rate (ASR) decreases significantly when reducing the outputs of some key skip connections.
arXiv Detail & Related papers (2022-11-02T15:39:19Z) - Backdoor Pre-trained Models Can Transfer to All [33.720258110911274]
We propose a new approach to map the inputs containing triggers directly to a predefined output representation of pre-trained NLP models.
In light of the unique properties of triggers in NLP, we propose two new metrics to measure the performance of backdoor attacks.
arXiv Detail & Related papers (2021-10-30T07:11:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.