GINO-Q: Learning an Asymptotically Optimal Index Policy for Restless Multi-armed Bandits
- URL: http://arxiv.org/abs/2408.09882v1
- Date: Mon, 19 Aug 2024 10:50:45 GMT
- Title: GINO-Q: Learning an Asymptotically Optimal Index Policy for Restless Multi-armed Bandits
- Authors: Gongpu Chen, Soung Chang Liew, Deniz Gunduz,
- Abstract summary: GINO-Q is a three-timescale approximation algorithm designed to learn an optimal index policy for restless multi-armed bandit (RMAB)
GINO-Q does not require RMABs to be indexable, enhancing its flexibility and applicability.
Our experimental results demonstrate that GINO-Q consistently learns near optimal policies, even for non-indexable RMABs.
- Score: 16.054685587034836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The restless multi-armed bandit (RMAB) framework is a popular model with applications across a wide variety of fields. However, its solution is hindered by the exponentially growing state space (with respect to the number of arms) and the combinatorial action space, making traditional reinforcement learning methods infeasible for large-scale instances. In this paper, we propose GINO-Q, a three-timescale stochastic approximation algorithm designed to learn an asymptotically optimal index policy for RMABs. GINO-Q mitigates the curse of dimensionality by decomposing the RMAB into a series of subproblems, each with the same dimension as a single arm, ensuring that complexity increases linearly with the number of arms. Unlike recently developed Whittle-index-based algorithms, GINO-Q does not require RMABs to be indexable, enhancing its flexibility and applicability. Our experimental results demonstrate that GINO-Q consistently learns near-optimal policies, even for non-indexable RMABs where Whittle-index-based algorithms perform poorly, and it converges significantly faster than existing baselines.
Related papers
- Combinatorial Multivariant Multi-Armed Bandits with Applications to Episodic Reinforcement Learning and Beyond [58.39457881271146]
We introduce a novel framework of multi-armed bandits (CMAB) with multivariant and probabilistically triggering arms (CMAB-MT)
Compared with existing CMAB works, CMAB-MT not only enhances the modeling power but also allows improved results by leveraging distinct statistical properties for multivariant random variables.
Our framework can include many important problems as applications, such as episodic reinforcement learning (RL) and probabilistic maximum coverage for goods distribution.
arXiv Detail & Related papers (2024-06-03T14:48:53Z) - Indexed Minimum Empirical Divergence-Based Algorithms for Linear Bandits [55.938644481736446]
Indexed Minimum Empirical Divergence (IMED) is a highly effective approach to the multi-armed bandit problem.
It has been observed to empirically outperform UCB-based algorithms and Thompson Sampling.
We present novel linear versions of the IMED algorithm, which we call the family of LinIMED algorithms.
arXiv Detail & Related papers (2024-05-24T04:11:58Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - An Optimal Algorithm for the Real-Valued Combinatorial Pure Exploration
of Multi-Armed Bandit [65.268245109828]
We study the real-valued pure exploration problem in the multi-armed bandit (R-CPE-MAB)
Existing methods in the R-CPE-MAB can be seen as a special case of the so-called transductive linear bandits.
We propose an algorithm named the gap-based exploration (CombGapE) algorithm, whose sample complexity matches the lower bound.
arXiv Detail & Related papers (2023-06-15T15:37:31Z) - Indexability is Not Enough for Whittle: Improved, Near-Optimal
Algorithms for Restless Bandits [30.532795983761314]
We study the problem of planning restless multi-armed bandits (RMABs) with multiple actions.
We first show that Whittle index policies can fail in simple and practically relevant settings.
We then propose an alternate planning algorithm based on the mean-field method.
arXiv Detail & Related papers (2022-10-31T19:35:15Z) - Optimistic Whittle Index Policy: Online Learning for Restless Bandits [31.312043984489666]
We propose the first online learning algorithm based on the Whittle index policy to learn transition dynamics.
Our algorithm, UCWhittle, achieves sublinear $O(sqrtT log T)$ frequentist regret to solve RMABs with unknown transitions.
arXiv Detail & Related papers (2022-05-30T18:32:20Z) - Reinforcement Learning for Finite-Horizon Restless Multi-Armed
Multi-Action Bandits [8.136957953239254]
We study a finite-horizon restless multi-armed bandit problem with multiple actions dubbed R(MA)2B.
The state of each arm evolves according to a controlled Markov decision process (MDP), and the reward of pulling an arm depends on both the current state of the corresponding MDP and the action taken.
Since finding the optimal policy is typically intractable, we propose a computationally appealing index policy which we call Occupancy-Measured-Reward Index Policy.
arXiv Detail & Related papers (2021-09-20T21:40:12Z) - Q-Learning Lagrange Policies for Multi-Action Restless Bandits [35.022322303796216]
Multi-action restless multi-armed bandits (RMABs) are a powerful framework for constrained resource allocation in which $N$ independent processes are managed.
We design the first algorithms for learning good policies for Multi-action RMABs online using combinations of Lagrangian relaxation and Q-learning.
arXiv Detail & Related papers (2021-06-22T19:20:09Z) - Efficient Algorithms for Finite Horizon and Streaming Restless
Multi-Armed Bandit Problems [30.759279275710078]
We propose a new and scalable approach to computing index-based solutions.
We provide algorithms designed to capture index decay without having to solve the costly finite horizon problem.
Our algorithms achieve an over 150x speed-up over existing methods in these tasks without loss in performance.
arXiv Detail & Related papers (2021-03-08T13:10:31Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.