Efficient Exploration in Deep Reinforcement Learning: A Novel Bayesian Actor-Critic Algorithm
- URL: http://arxiv.org/abs/2408.10055v1
- Date: Mon, 19 Aug 2024 14:50:48 GMT
- Title: Efficient Exploration in Deep Reinforcement Learning: A Novel Bayesian Actor-Critic Algorithm
- Authors: Nikolai Rozanov,
- Abstract summary: Reinforcement learning (RL) and Deep Reinforcement Learning (DRL) have the potential to disrupt and are already changing the way we interact with the world.
One of the key indicators of their applicability is their ability to scale and work in real-world scenarios.
- Score: 0.195804735329484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) and Deep Reinforcement Learning (DRL), in particular, have the potential to disrupt and are already changing the way we interact with the world. One of the key indicators of their applicability is their ability to scale and work in real-world scenarios, that is in large-scale problems. This scale can be achieved via a combination of factors, the algorithm's ability to make use of large amounts of data and computational resources and the efficient exploration of the environment for viable solutions (i.e. policies). In this work, we investigate and motivate some theoretical foundations for deep reinforcement learning. We start with exact dynamic programming and work our way up to stochastic approximations and stochastic approximations for a model-free scenario, which forms the theoretical basis of modern reinforcement learning. We present an overview of this highly varied and rapidly changing field from the perspective of Approximate Dynamic Programming. We then focus our study on the short-comings with respect to exploration of the cornerstone approaches (i.e. DQN, DDQN, A2C) in deep reinforcement learning. On the theory side, our main contribution is the proposal of a novel Bayesian actor-critic algorithm. On the empirical side, we evaluate Bayesian exploration as well as actor-critic algorithms on standard benchmarks as well as state-of-the-art evaluation suites and show the benefits of both of these approaches over current state-of-the-art deep RL methods. We release all the implementations and provide a full python library that is easy to install and hopefully will serve the reinforcement learning community in a meaningful way, and provide a strong foundation for future work.
Related papers
- How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Efficient Reinforcement Learning via Decoupling Exploration and Utilization [6.305976803910899]
Reinforcement Learning (RL) has achieved remarkable success across multiple fields and applications, including gaming, robotics, and autonomous vehicles.
In this work, our aim is to train agent with efficient learning by decoupling exploration and utilization, so that agent can escaping the conundrum of suboptimal Solutions.
The above idea is implemented in the proposed OPARL (Optimistic and Pessimistic Actor Reinforcement Learning) algorithm.
arXiv Detail & Related papers (2023-12-26T09:03:23Z) - On the Importance of Exploration for Generalization in Reinforcement
Learning [89.63074327328765]
We propose EDE: Exploration via Distributional Ensemble, a method that encourages exploration of states with high uncertainty.
Our algorithm is the first value-based approach to achieve state-of-the-art on both Procgen and Crafter.
arXiv Detail & Related papers (2023-06-08T18:07:02Z) - Large Language Models can Implement Policy Iteration [18.424558160071808]
In-Context Policy Iteration is an algorithm for performing Reinforcement Learning (RL), in-context, using foundation models.
ICPI learns to perform RL tasks without expert demonstrations or gradients.
ICPI iteratively updates the contents of the prompt from which it derives its policy through trial-and-error interaction with an RL environment.
arXiv Detail & Related papers (2022-10-07T21:18:22Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
We develop a method that allows us to plan for exploration while taking the task and the current knowledge into account.
We demonstrate that our method learns strong policies with 2x fewer samples than strong exploration baselines.
arXiv Detail & Related papers (2022-10-06T20:28:55Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Discovering Reinforcement Learning Algorithms [53.72358280495428]
Reinforcement learning algorithms update an agent's parameters according to one of several possible rules.
This paper introduces a new meta-learning approach that discovers an entire update rule.
It includes both 'what to predict' (e.g. value functions) and 'how to learn from it' by interacting with a set of environments.
arXiv Detail & Related papers (2020-07-17T07:38:39Z) - Meta-Gradient Reinforcement Learning with an Objective Discovered Online [54.15180335046361]
We propose an algorithm based on meta-gradient descent that discovers its own objective, flexibly parameterised by a deep neural network.
Because the objective is discovered online, it can adapt to changes over time.
On the Atari Learning Environment, the meta-gradient algorithm adapts over time to learn with greater efficiency.
arXiv Detail & Related papers (2020-07-16T16:17:09Z) - Inverse Reinforcement Learning from a Gradient-based Learner [41.8663538249537]
Inverse Reinforcement Learning addresses the problem of inferring an expert's reward function from demonstrations.
In this paper, we propose a new algorithm for this setting, in which the goal is to recover the reward function being optimized by an agent.
arXiv Detail & Related papers (2020-07-15T16:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.