A Comprehensive Survey of Reinforcement Learning: From Algorithms to Practical Challenges
- URL: http://arxiv.org/abs/2411.18892v2
- Date: Sat, 01 Feb 2025 23:49:26 GMT
- Title: A Comprehensive Survey of Reinforcement Learning: From Algorithms to Practical Challenges
- Authors: Majid Ghasemi, Amir Hossein Moosavi, Dariush Ebrahimi,
- Abstract summary: Reinforcement Learning (RL) has emerged as a powerful paradigm in Artificial Intelligence (AI)
This paper presents a comprehensive survey of RL, meticulously analyzing a wide range of algorithms.
We offer practical insights into the selection and implementation of RL algorithms, addressing common challenges like convergence, stability, and the exploration-exploitation dilemma.
- Score: 2.2448567386846916
- License:
- Abstract: Reinforcement Learning (RL) has emerged as a powerful paradigm in Artificial Intelligence (AI), enabling agents to learn optimal behaviors through interactions with their environments. Drawing from the foundations of trial and error, RL equips agents to make informed decisions through feedback in the form of rewards or penalties. This paper presents a comprehensive survey of RL, meticulously analyzing a wide range of algorithms, from foundational tabular methods to advanced Deep Reinforcement Learning (DRL) techniques. We categorize and evaluate these algorithms based on key criteria such as scalability, sample efficiency, and suitability. We compare the methods in the form of their strengths and weaknesses in diverse settings. Additionally, we offer practical insights into the selection and implementation of RL algorithms, addressing common challenges like convergence, stability, and the exploration-exploitation dilemma. This paper serves as a comprehensive reference for researchers and practitioners aiming to harness the full potential of RL in solving complex, real-world problems.
Related papers
- Safe and Robust Reinforcement Learning: Principles and Practice [0.0]
Reinforcement Learning has shown remarkable success in solving relatively complex tasks.
The deployment of RL systems in real-world scenarios poses significant challenges related to safety and robustness.
This paper explores the main dimensions of the safe and robust RL landscape, encompassing algorithmic, ethical, and practical considerations.
arXiv Detail & Related papers (2024-03-27T13:14:29Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Reinforcement Learning with Stepwise Fairness Constraints [50.538878453547966]
We introduce the study of reinforcement learning with stepwise fairness constraints.
We provide learning algorithms with strong theoretical guarantees in regard to policy optimality and fairness violation.
arXiv Detail & Related papers (2022-11-08T04:06:23Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - A Survey on Offline Reinforcement Learning: Taxonomy, Review, and Open
Problems [0.0]
Reinforcement learning (RL) has experienced a dramatic increase in popularity.
There is still a wide range of domains inaccessible to RL due to the high cost and danger of interacting with the environment.
offline RL is a paradigm that learns exclusively from static datasets of previously collected interactions.
arXiv Detail & Related papers (2022-03-02T20:05:11Z) - Deep Reinforcement Learning Versus Evolution Strategies: A Comparative
Survey [2.554326189662943]
Deep Reinforcement Learning (DRL) and Evolution Strategies (ESs) have surpassed human-level control in many sequential decision-making problems.
To get insights into the strengths and weaknesses of DRL versus ESs, an analysis of their respective capabilities and limitations is provided.
arXiv Detail & Related papers (2021-09-28T18:45:30Z) - Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework
and Survey [0.7366405857677226]
Reinforcement Learning (RL) methods provide a potential backbone for the cognitive model required for the development of Broad-XAI.
RL represents a suite of approaches that have had increasing success in solving a range of sequential decision-making problems.
This paper aims to introduce a conceptual framework, called the Causal XRL Framework (CXF), that unifies the current XRL research and uses RL as a backbone to the development of Broad-XAI.
arXiv Detail & Related papers (2021-08-20T05:18:50Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
We propose two environment-agnostic, algorithm-agnostic quantitative metrics for task difficulty.
We show that these metrics have higher correlations with normalized task solvability scores than a variety of alternatives.
These metrics can also be used for fast and compute-efficient optimizations of key design parameters.
arXiv Detail & Related papers (2021-03-23T17:49:50Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
In real-world tasks, reinforcement learning agents encounter situations that are not present during training time.
To ensure reliable performance, the RL agents need to exhibit robustness against worst-case situations.
We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem.
arXiv Detail & Related papers (2021-03-18T16:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.