Facial Wrinkle Segmentation for Cosmetic Dermatology: Pretraining with Texture Map-Based Weak Supervision
- URL: http://arxiv.org/abs/2408.10060v4
- Date: Tue, 19 Nov 2024 03:58:40 GMT
- Title: Facial Wrinkle Segmentation for Cosmetic Dermatology: Pretraining with Texture Map-Based Weak Supervision
- Authors: Junho Moon, Haejun Chung, Ikbeom Jang,
- Abstract summary: We build and release the first public facial wrinkle dataset, 'FFHQ-Wrinkle', an extension of the NVIDIA FFHQ dataset.
It includes 1,000 images with human labels and 50,000 images with automatically generated weak labels.
This dataset could serve as a foundation for the research community to develop advanced wrinkle detection algorithms.
- Score: 0.053801353100098995
- License:
- Abstract: Facial wrinkle detection plays a crucial role in cosmetic dermatology. Precise manual segmentation of facial wrinkles is challenging and time-consuming, with inherent subjectivity leading to inconsistent results among graders. To address this issue, we propose two solutions. First, we build and release the first public facial wrinkle dataset, 'FFHQ-Wrinkle', an extension of the NVIDIA FFHQ dataset. It includes 1,000 images with human labels and 50,000 images with automatically generated weak labels. This dataset could serve as a foundation for the research community to develop advanced wrinkle detection algorithms. Second, we introduce a simple training strategy utilizing texture maps, applicable to various segmentation models, to detect wrinkles across the face. Our two-stage training strategy first pretrain models on a large dataset with weak labels (N=50k), or masked texture maps generated through computer vision techniques, without human intervention. We then finetune the models using human-labeled data (N=1k), which consists of manually labeled wrinkle masks. The network takes as input a combination of RGB and masked texture map of the image, comprising four channels, in finetuning. We effectively combine labels from multiple annotators to minimize subjectivity in manual labeling. Our strategies demonstrate improved segmentation performance in facial wrinkle segmentation both quantitatively and visually compared to existing pretraining methods. The dataset is available at https://github.com/labhai/ffhq-wrinkle-dataset.
Related papers
- Dataset Diffusion: Diffusion-based Synthetic Dataset Generation for
Pixel-Level Semantic Segmentation [6.82236459614491]
We propose a novel method for generating pixel-level semantic segmentation labels using the text-to-image generative model Stable Diffusion.
By utilizing the text prompts, cross-attention, and self-attention of SD, we introduce three new techniques: class-prompt appending, class-prompt cross-attention, and self-attention exponentiation.
These techniques enable us to generate segmentation maps corresponding to synthetic images.
arXiv Detail & Related papers (2023-09-25T17:19:26Z) - Microscopy Image Segmentation via Point and Shape Regularized Data
Synthesis [9.47802391546853]
We develop a unified pipeline for microscopy image segmentation using synthetically generated training data.
Our framework achieves comparable results to models trained on authentic microscopy images with dense labels.
arXiv Detail & Related papers (2023-08-18T22:00:53Z) - MixReorg: Cross-Modal Mixed Patch Reorganization is a Good Mask Learner
for Open-World Semantic Segmentation [110.09800389100599]
We propose MixReorg, a novel and straightforward pre-training paradigm for semantic segmentation.
Our approach involves generating fine-grained patch-text pairs data by mixing image patches while preserving the correspondence between patches and text.
With MixReorg as a mask learner, conventional text-supervised semantic segmentation models can achieve highly generalizable pixel-semantic alignment ability.
arXiv Detail & Related papers (2023-08-09T09:35:16Z) - CorrMatch: Label Propagation via Correlation Matching for
Semi-Supervised Semantic Segmentation [73.89509052503222]
This paper presents a simple but performant semi-supervised semantic segmentation approach, called CorrMatch.
We observe that the correlation maps not only enable clustering pixels of the same category easily but also contain good shape information.
We propose to conduct pixel propagation by modeling the pairwise similarities of pixels to spread the high-confidence pixels and dig out more.
Then, we perform region propagation to enhance the pseudo labels with accurate class-agnostic masks extracted from the correlation maps.
arXiv Detail & Related papers (2023-06-07T10:02:29Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
We present a task-agnostic anonymization procedure that directly optimize the images' latent representation in the latent space of a pre-trained GAN.
We demonstrate through a series of experiments that our method is capable of anonymizing the identity of the images whilst -- crucially -- better-preserving the facial attributes.
arXiv Detail & Related papers (2023-03-20T17:34:05Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Foreground-Background Separation through Concept Distillation from
Generative Image Foundation Models [6.408114351192012]
We present a novel method that enables the generation of general foreground-background segmentation models from simple textual descriptions.
We show results on the task of segmenting four different objects (humans, dogs, cars, birds) and a use case scenario in medical image analysis.
arXiv Detail & Related papers (2022-12-29T13:51:54Z) - Alpha Matte Generation from Single Input for Portrait Matting [79.62140902232628]
The goal is to predict an alpha matte that identifies the effect of each pixel on the foreground subject.
Traditional approaches and most of the existing works utilized an additional input, e.g., trimap, background image, to predict alpha matte.
We introduce an additional input-free approach to perform portrait matting using Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2021-06-06T18:53:42Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.