論文の概要: Geometry Informed Tokenization of Molecules for Language Model Generation
- arxiv url: http://arxiv.org/abs/2408.10120v1
- Date: Mon, 19 Aug 2024 16:09:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 15:33:14.627725
- Title: Geometry Informed Tokenization of Molecules for Language Model Generation
- Title(参考訳): 幾何学インフォームドによる言語モデル生成のための分子のトークン化
- Authors: Xiner Li, Limei Wang, Youzhi Luo, Carl Edwards, Shurui Gui, Yuchao Lin, Heng Ji, Shuiwang Ji,
- Abstract要約: 言語モデル(LM)を用いた三次元空間における分子生成の検討
分子グラフのトークン化は存在するが、3次元幾何学では、ほとんど探索されていない。
分子幾何学を$SE(3)$-invariant 1D離散配列に変換するGeo2Seqを提案する。
- 参考スコア(独自算出の注目度): 85.80491667588923
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We consider molecule generation in 3D space using language models (LMs), which requires discrete tokenization of 3D molecular geometries. Although tokenization of molecular graphs exists, that for 3D geometries is largely unexplored. Here, we attempt to bridge this gap by proposing the Geo2Seq, which converts molecular geometries into $SE(3)$-invariant 1D discrete sequences. Geo2Seq consists of canonical labeling and invariant spherical representation steps, which together maintain geometric and atomic fidelity in a format conducive to LMs. Our experiments show that, when coupled with Geo2Seq, various LMs excel in molecular geometry generation, especially in controlled generation tasks.
- Abstract(参考訳): 言語モデル(LM)を用いて3次元空間における分子生成を考察する。
分子グラフのトークン化は存在するが、3次元幾何学では、ほとんど探索されていない。
ここでは、分子幾何学を$SE(3)$-invariant 1D離散配列に変換するGeo2Seqを提案することによって、このギャップを埋めようとしている。
Geo2Seqは標準ラベリングと不変球面表現ステップで構成されており、このステップは共にLMに類似した形式で幾何学的および原子的忠実性を維持する。
実験の結果,Geo2Seqと組み合わせることで,分子幾何生成,特に制御された生成タスクにおいて,様々なLMが優れていることがわかった。
関連論文リスト
- A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
原子系の計算モデリングの最近の進歩は、これらを3次元ユークリッド空間のノードとして埋め込まれた原子を含む幾何学的グラフとして表現している。
Geometric Graph Neural Networksは、タンパク質構造予測から分子シミュレーション、物質生成まで、幅広い応用を駆動する機械学習アーキテクチャとして好まれている。
本稿では,3次元原子システムのための幾何学的GNNの分野について,包括的で自己完結した概要を述べる。
論文 参考訳(メタデータ) (2023-12-12T18:44:19Z) - Geometric Latent Diffusion Models for 3D Molecule Generation [172.15028281732737]
生成モデル、特に拡散モデル(DM)は、特徴豊富な測地を生成する上で有望な結果を得た。
我々はGeoLDM(Geometric Latent Diffusion Models)と呼ばれる新しい3次元分子生成法を提案する。
論文 参考訳(メタデータ) (2023-05-02T01:07:22Z) - 3D Molecular Geometry Analysis with 2D Graphs [79.47097907673877]
分子の基底状態3次元ジオメトリは多くの分子解析タスクに必須である。
現代の量子力学的手法は正確な3次元幾何学を計算できるが、計算は禁じられている。
分子グラフから3次元幾何学を予測するための新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-01T19:00:46Z) - Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular
Graphs [79.06686274377009]
我々は、約400万分子の正確な基底状態のジオメトリーを持つデータセットを含むMolecule3Dと呼ばれるベンチマークを開発する。
我々は3次元空間における原子と原子の対距離を予測する2つのベースライン法を実装した。
本手法は予測精度に匹敵する精度を達成できるが,計算コストははるかに小さい。
論文 参考訳(メタデータ) (2021-09-30T22:09:28Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。