論文の概要: NeuFlow v2: High-Efficiency Optical Flow Estimation on Edge Devices
- arxiv url: http://arxiv.org/abs/2408.10161v1
- Date: Mon, 19 Aug 2024 17:13:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 15:23:23.651809
- Title: NeuFlow v2: High-Efficiency Optical Flow Estimation on Edge Devices
- Title(参考訳): NeuFlow v2:エッジデバイス上での高効率光フロー推定
- Authors: Zhiyong Zhang, Aniket Gupta, Huaizu Jiang, Hanumant Singh,
- Abstract要約: 計算要求の低減と高い精度のバランスをとる高効率光フロー法を提案する。
より軽量なバックボーンや高速リファインメントモジュールなど,新たなコンポーネントを導入しています。
我々のモデルでは,合成データと実世界のデータの両方で同等の性能を維持しながら,10倍-70倍の高速化を実現している。
- 参考スコア(独自算出の注目度): 6.157420789049589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time high-accuracy optical flow estimation is crucial for various real-world applications. While recent learning-based optical flow methods have achieved high accuracy, they often come with significant computational costs. In this paper, we propose a highly efficient optical flow method that balances high accuracy with reduced computational demands. Building upon NeuFlow v1, we introduce new components including a much more light-weight backbone and a fast refinement module. Both these modules help in keeping the computational demands light while providing close to state of the art accuracy. Compares to other state of the art methods, our model achieves a 10x-70x speedup while maintaining comparable performance on both synthetic and real-world data. It is capable of running at over 20 FPS on 512x384 resolution images on a Jetson Orin Nano. The full training and evaluation code is available at https://github.com/neufieldrobotics/NeuFlow_v2.
- Abstract(参考訳): リアルタイムの高精度光フロー推定は,様々な実世界の応用に不可欠である。
最近の学習ベース光学フロー法は精度が高いが、計算コストがかなり高い場合が多い。
本稿では,高い精度と計算負荷の低減を両立させる高効率光流法を提案する。
NeuFlow v1に基づいて、より軽量なバックボーンと高速リファインメントモジュールを含む新しいコンポーネントを導入します。
これらのモジュールはどちらも、最先端の精度に近づきながら、計算要求を軽く保つのに役立つ。
他の最先端手法と比較して、我々のモデルは合成データと実世界のデータに匹敵する性能を維持しながら10x-70xの高速化を実現している。
これはJetson Orin Nanoで512x384解像度の画像を20FPS以上で実行することができる。
完全なトレーニングと評価のコードはhttps://github.com/neufieldrobotics/NeuFlow_v2で公開されている。
関連論文リスト
- MemFlow: Optical Flow Estimation and Prediction with Memory [54.22820729477756]
本稿では,メモリを用いた光フロー推定と予測をリアルタイムに行うMemFlowを提案する。
本手法では,メモリの読み出しと更新を行うモジュールをリアルタイムに収集する。
われわれのアプローチは、過去の観測に基づいて、将来の光流の予測にシームレスに拡張する。
論文 参考訳(メタデータ) (2024-04-07T04:56:58Z) - NeuFlow: Real-time, High-accuracy Optical Flow Estimation on Robots Using Edge Devices [6.470511497023878]
リアルタイムの高精度光フロー推定は,様々な応用において重要な要素である。
我々は,高精度かつ計算コストの懸念に対処する,高速な光フローアーキテクチャであるNeuFlowを提案する。
当社のアプローチはエッジコンピューティングプラットフォーム上で約30FPSを実現しており、複雑なコンピュータビジョンタスクのデプロイにおいて大きなブレークスルーをもたらしている。
論文 参考訳(メタデータ) (2024-03-15T15:58:51Z) - RealFlow: EM-based Realistic Optical Flow Dataset Generation from Videos [28.995525297929348]
RealFlowは、ラベルのないリアルなビデオから直接、大規模な光フローデータセットを作成することができるフレームワークである。
まず,一対のビデオフレーム間の光フローを推定し,予測されたフローに基づいて,このペアから新たな画像を生成する。
本手法は,教師付きおよび教師なしの光流法と比較して,2つの標準ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2022-07-22T13:33:03Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
光フロー推定学習のためのGMFlowフレームワークを提案する。
機能拡張のためのカスタマイズトランスフォーマー、グローバル機能マッチングのための相関層とソフトマックス層、フロー伝搬のための自己保持層である。
我々の新しいフレームワークは、挑戦的なSintelベンチマークにおいて、32項目RAFTのパフォーマンスより優れています。
論文 参考訳(メタデータ) (2021-11-26T18:59:56Z) - Dense Optical Flow from Event Cameras [55.79329250951028]
本稿では,イベントカメラからの高密度光フロー推定に特徴相関と逐次処理を導入することを提案する。
提案手法は、高密度光流を計算し、MVSEC上での終点誤差を23%削減する。
論文 参考訳(メタデータ) (2021-08-24T07:39:08Z) - AutoFlow: Learning a Better Training Set for Optical Flow [62.40293188964933]
AutoFlowは、光学フローのトレーニングデータをレンダリングする手法である。
AutoFlowはPWC-NetとRAFTの両方の事前トレーニングにおいて最先端の精度を実現する。
論文 参考訳(メタデータ) (2021-04-29T17:55:23Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
ディセンス光学フロー推定は、多くのロボットビジョンタスクで重要な役割を果たしています。
現在のネットワークはしばしば多くのパラメータを占有し、計算コストがかかる。
提案したFastFlowNetは、周知の粗大なやり方で、以下のイノベーションで機能する。
論文 参考訳(メタデータ) (2021-03-08T03:09:37Z) - Reinforcement Learning with Latent Flow [78.74671595139613]
Flow of Latents for Reinforcement Learning (Flare)はRLのためのネットワークアーキテクチャであり、潜時ベクトル差分を通じて時間情報を明示的に符号化する。
本研究では,Frareが状態速度に明示的にアクセスすることなく,状態ベースRLの最適性能を回復することを示す。
我々はまた、FlareがDeepMindコントロールベンチマークスイート内のピクセルベースの挑戦的な連続制御タスクで最先端のパフォーマンスを達成することも示しています。
論文 参考訳(メタデータ) (2021-01-06T03:50:50Z) - FDFlowNet: Fast Optical Flow Estimation using a Deep Lightweight Network [12.249680550252327]
我々はFDFlowNet(fast Deep Flownet)と呼ばれるリアルタイム光フロー推定のための軽量で効果的なモデルを提案する。
我々は、PWC-Netの約2倍の速度で、挑戦的なKITTIとSintelベンチマークにおいて、より良い、あるいは同様の精度を達成する。
論文 参考訳(メタデータ) (2020-06-22T14:01:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。