LongVILA: Scaling Long-Context Visual Language Models for Long Videos
- URL: http://arxiv.org/abs/2408.10188v6
- Date: Fri, 13 Dec 2024 02:32:06 GMT
- Title: LongVILA: Scaling Long-Context Visual Language Models for Long Videos
- Authors: Yukang Chen, Fuzhao Xue, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian Tang, Shang Yang, Zhijian Liu, Ethan He, Hongxu Yin, Pavlo Molchanov, Jan Kautz, Linxi Fan, Yuke Zhu, Yao Lu, Song Han,
- Abstract summary: LongVILA is a full-stack solution for long-context visual-language models.<n>LongVILA efficiently extends the number of video frames of VILA from 8 to 2048, achieving 99.8% accuracy in 6,000-frame (more than 1 million tokens) video needle-in-a-haystack.
- Score: 86.28679075537089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-context capability is critical for multi-modal foundation models, especially for long video understanding. We introduce LongVILA, a full-stack solution for long-context visual-language models by co-designing the algorithm and system. For model training, we upgrade existing VLMs to support long video understanding by incorporating two additional stages, i.e., long context extension and long video supervised fine-tuning. However, training on long video is computationally and memory intensive. We introduce the long-context Multi-Modal Sequence Parallelism (MM-SP) system that efficiently parallelizes long video training and inference, enabling 2M context length training on 256 GPUs without any gradient checkpointing. LongVILA efficiently extends the number of video frames of VILA from 8 to 2048, achieving 99.8% accuracy in 6,000-frame (more than 1 million tokens) video needle-in-a-haystack. LongVILA-7B demonstrates strong accuracy on 9 popular video benchmarks, e.g. 65.1% VideoMME with subtitle. Besides, MM-SP is 2.1x - 5.7x faster than ring style sequence parallelism and 1.1x - 1.4x faster than Megatron with a hybrid context and tensor parallelism. Moreover, it seamlessly integrates with Hugging Face Transformers.
Related papers
- Long-VITA: Scaling Large Multi-modal Models to 1 Million Tokens with Leading Short-Context Accuracy [111.1291107651131]
Long-VITA is a large multi-modal model for long-context visual-language understanding tasks.
It is adept at concurrently processing and analyzing modalities of image, video, and text over 4K frames or 1M tokens.
Long-VITA is fully reproducible and supports both NPU and GPU platforms for training and testing.
arXiv Detail & Related papers (2025-02-07T18:59:56Z) - HLV-1K: A Large-scale Hour-Long Video Benchmark for Time-Specific Long Video Understanding [52.696422425058245]
We build a large-scale hour-long long video benchmark, HLV-1K, designed to evaluate long video understanding models.
HLV-1K comprises 1009 hour-long videos with 14,847 high-quality question answering (QA) and multi-choice question asnwering (MCQA)
We evaluate our benchmark using existing state-of-the-art methods and demonstrate its value for testing deep long video understanding capabilities at different levels and for various tasks.
arXiv Detail & Related papers (2025-01-03T05:32:37Z) - VideoChat-Flash: Hierarchical Compression for Long-Context Video Modeling [43.485687038460895]
Long-context video modeling is critical for multimodal large language models (MLLMs)
This paper aims to address this issue from aspects of model architecture, training data, training strategy and evaluation benchmark.
We build a powerful video MLLM named VideoChat-Flash, which shows a leading performance on both mainstream long and short video benchmarks.
arXiv Detail & Related papers (2024-12-31T18:01:23Z) - LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding [65.46303012350207]
LongVU is an adaptive compression mechanism that reduces the number of video tokens while preserving visual details of long videos.
We leverage DINOv2 features to remove redundant frames that exhibit high similarity.
We perform spatial token reduction across frames based on their temporal dependencies.
arXiv Detail & Related papers (2024-10-22T21:21:37Z) - Visual Context Window Extension: A New Perspective for Long Video Understanding [45.134271969594614]
We tackle the challenge of long video understanding from the perspective of context windows.
We propose to adapt LMMs for long video understanding tasks by extending the visual context window.
Our method consistently improves the performance as the number of video frames increases.
arXiv Detail & Related papers (2024-09-30T07:25:16Z) - VideoLLaMB: Long-context Video Understanding with Recurrent Memory Bridges [42.555895949250704]
VideoLLaMB is a novel framework that utilizes temporal memory tokens within bridge layers to allow for the encoding of entire video sequences.
SceneTilling algorithm segments videos into independent semantic units to preserve semantic integrity.
In terms of efficiency, VideoLLaMB, trained on 16 frames, supports up to 320 frames on a single Nvidia A100 GPU.
arXiv Detail & Related papers (2024-09-02T08:52:58Z) - LongVideoBench: A Benchmark for Long-context Interleaved Video-Language Understanding [41.9477837230283]
LongVideoBench is a question-answering benchmark that features video-language interleaved inputs up to an hour long.
Our benchmark includes 3,763 varying-length web-collected videos with their subtitles across diverse themes.
We formulate a novel video question-answering task termed referring reasoning.
arXiv Detail & Related papers (2024-07-22T16:00:55Z) - Long Context Transfer from Language to Vision [74.78422371545716]
Video sequences offer valuable temporal information, but existing large multimodal models (LMMs) fall short in understanding extremely long videos.
In this paper, we approach this problem from the perspective of the language model.
By simply extrapolating the context length of the language backbone, we enable LMMs to comprehend orders of magnitude more visual tokens without any video training.
arXiv Detail & Related papers (2024-06-24T17:58:06Z) - Video-Infinity: Distributed Long Video Generation [73.30145218077074]
Diffusion models have recently achieved remarkable results for video generation.
Our method generates videos up to 2,300 frames in approximately 5 minutes, enabling long video generation at a speed 100 times faster than the prior methods.
arXiv Detail & Related papers (2024-06-24T01:56:12Z) - MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding [66.56100008577134]
This study focuses on designing an efficient and effective model for long-term video understanding.
We propose to process videos in an online manner and store past video information in a memory bank.
Our model can achieve state-of-the-art performances across multiple datasets.
arXiv Detail & Related papers (2024-04-08T17:59:24Z) - LVCHAT: Facilitating Long Video Comprehension [25.395689904747965]
We propose Long Video Chat (LVChat) to enable multimodal large language models (LLMs) to read videos.
LV significantly outperforms existing methods by up to 27% in accuracy on long-video QA datasets and long-video captioning benchmarks.
arXiv Detail & Related papers (2024-02-19T11:59:14Z) - LongBench: A Bilingual, Multitask Benchmark for Long Context Understanding [58.20031627237889]
LongBench is the first bilingual, multi-task benchmark for long context understanding.
It comprises 21 datasets across 6 task categories in both English and Chinese, with an average length of 6,711 words (English) and 13,386 characters (Chinese)
arXiv Detail & Related papers (2023-08-28T11:53:40Z) - Long-Form Video-Language Pre-Training with Multimodal Temporal
Contrastive Learning [39.80936685227549]
Large-scale video-language pre-training has shown significant improvement in video-language understanding tasks.
We introduce a Long-Form VIdeo-LAnguage pre-training model (VILA) and train it on a large-scale long-form video and paragraph dataset.
We fine-tune the model on seven downstream long-form video-language understanding tasks, achieve new state-of-the-art performances.
arXiv Detail & Related papers (2022-10-12T09:08:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.