A Conceptual Framework for Ethical Evaluation of Machine Learning Systems
- URL: http://arxiv.org/abs/2408.10239v1
- Date: Mon, 5 Aug 2024 01:06:49 GMT
- Title: A Conceptual Framework for Ethical Evaluation of Machine Learning Systems
- Authors: Neha R. Gupta, Jessica Hullman, Hari Subramonyam,
- Abstract summary: Ethical implications appear when designing evaluations of machine learning systems.
We present a utility framework, characterizing the key trade-off in ethical evaluation as balancing information gain against potential ethical harms.
Our analysis underscores the critical need for development teams to deliberately assess and manage ethical complexities.
- Score: 12.887834116390358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Research in Responsible AI has developed a range of principles and practices to ensure that machine learning systems are used in a manner that is ethical and aligned with human values. However, a critical yet often neglected aspect of ethical ML is the ethical implications that appear when designing evaluations of ML systems. For instance, teams may have to balance a trade-off between highly informative tests to ensure downstream product safety, with potential fairness harms inherent to the implemented testing procedures. We conceptualize ethics-related concerns in standard ML evaluation techniques. Specifically, we present a utility framework, characterizing the key trade-off in ethical evaluation as balancing information gain against potential ethical harms. The framework is then a tool for characterizing challenges teams face, and systematically disentangling competing considerations that teams seek to balance. Differentiating between different types of issues encountered in evaluation allows us to highlight best practices from analogous domains, such as clinical trials and automotive crash testing, which navigate these issues in ways that can offer inspiration to improve evaluation processes in ML. Our analysis underscores the critical need for development teams to deliberately assess and manage ethical complexities that arise during the evaluation of ML systems, and for the industry to move towards designing institutional policies to support ethical evaluations.
Related papers
- Human services organizations and the responsible integration of AI: Considering ethics and contextualizing risk(s) [0.0]
Authors argue that ethical concerns about AI deployment vary significantly based on implementation context and specific use cases.
They propose a dimensional risk assessment approach that considers factors like data sensitivity, professional oversight requirements, and potential impact on client wellbeing.
arXiv Detail & Related papers (2025-01-20T19:38:21Z) - Deontic Temporal Logic for Formal Verification of AI Ethics [4.028503203417233]
This paper proposes a formalization based on deontic logic to define and evaluate the ethical behavior of AI systems.
It introduces axioms and theorems to capture ethical requirements related to fairness and explainability.
The authors evaluate the effectiveness of this formalization by assessing the ethics of the real-world COMPAS and loan prediction AI systems.
arXiv Detail & Related papers (2025-01-10T07:48:40Z) - Where Assessment Validation and Responsible AI Meet [0.0876953078294908]
We propose a unified assessment framework that considers classical test validation theory and assessment-specific and domain-agnostic RAI principles and practice.
The framework addresses responsible AI use for assessment that supports validity arguments, alignment with AI ethics to maintain human values and oversight, and broader social responsibility associated with AI use.
arXiv Detail & Related papers (2024-11-04T20:20:29Z) - Can We Trust AI Agents? An Experimental Study Towards Trustworthy LLM-Based Multi-Agent Systems for AI Ethics [10.084913433923566]
This study examines how trustworthiness-enhancing techniques affect ethical AI output generation.
We design the prototype LLM-BMAS, where agents engage in structured discussions on real-world ethical AI issues.
Discussions reveal terms like bias detection, transparency, accountability, user consent, compliance, fairness evaluation, and EU AI Act compliance.
arXiv Detail & Related papers (2024-10-25T20:17:59Z) - Pessimistic Evaluation [58.736490198613154]
We argue that evaluating information access systems assumes utilitarian values not aligned with traditions of information access based on equal access.
We advocate for pessimistic evaluation of information access systems focusing on worst case utility.
arXiv Detail & Related papers (2024-10-17T15:40:09Z) - Ethics in conversation: Building an ethics assurance case for autonomous
AI-enabled voice agents in healthcare [1.8964739087256175]
The principles-based ethics assurance argument pattern is one proposal in the AI ethics landscape.
This paper presents the interim findings of a case study applying this ethics assurance framework to the use of Dora, an AI-based telemedicine system.
arXiv Detail & Related papers (2023-05-23T16:04:59Z) - Towards a multi-stakeholder value-based assessment framework for
algorithmic systems [76.79703106646967]
We develop a value-based assessment framework that visualizes closeness and tensions between values.
We give guidelines on how to operationalize them, while opening up the evaluation and deliberation process to a wide range of stakeholders.
arXiv Detail & Related papers (2022-05-09T19:28:32Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Case Study: Deontological Ethics in NLP [119.53038547411062]
We study one ethical theory, namely deontological ethics, from the perspective of NLP.
In particular, we focus on the generalization principle and the respect for autonomy through informed consent.
We provide four case studies to demonstrate how these principles can be used with NLP systems.
arXiv Detail & Related papers (2020-10-09T16:04:51Z) - On the Morality of Artificial Intelligence [154.69452301122175]
We propose conceptual and practical principles and guidelines for Machine Learning research and deployment.
We insist on concrete actions that can be taken by practitioners to pursue a more ethical and moral practice of ML aimed at using AI for social good.
arXiv Detail & Related papers (2019-12-26T23:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.