論文の概要: Optical Music Recognition in Manuscripts from the Ricordi Archive
- arxiv url: http://arxiv.org/abs/2408.10260v1
- Date: Wed, 14 Aug 2024 09:29:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 18:28:07.458549
- Title: Optical Music Recognition in Manuscripts from the Ricordi Archive
- Title(参考訳): リコーディアーカイブによる写本の光学的音楽認識
- Authors: Federico Simonetta, Rishav Mondal, Luca Andrea Ludovico, Stavros Ntalampiras,
- Abstract要約: リコルディのアーカイブは、ドニゼッティ、ヴェルディ、プッチーニといった著名なオペラ作曲家の著名な音楽写本のコレクションであり、デジタル化されている。
我々は,ノート,ステーブ,クリーフ,消去,作曲家の注釈など,写本に描かれた様々な音楽要素を表すサンプルを自動的に抽出した。
我々は、識別された音楽要素を区別するために、複数のニューラルネットワークベースの分類器を訓練した。
- 参考スコア(独自算出の注目度): 6.274767633959002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Ricordi archive, a prestigious collection of significant musical manuscripts from renowned opera composers such as Donizetti, Verdi and Puccini, has been digitized. This process has allowed us to automatically extract samples that represent various musical elements depicted on the manuscripts, including notes, staves, clefs, erasures, and composer's annotations, among others. To distinguish between digitization noise and actual music elements, a subset of these images was meticulously grouped and labeled by multiple individuals into several classes. After assessing the consistency of the annotations, we trained multiple neural network-based classifiers to differentiate between the identified music elements. The primary objective of this study was to evaluate the reliability of these classifiers, with the ultimate goal of using them for the automatic categorization of the remaining unannotated data set. The dataset, complemented by manual annotations, models, and source code used in these experiments are publicly accessible for replication purposes.
- Abstract(参考訳): リコルディのアーカイブは、ドニゼッティ、ヴェルディ、プッチーニなどの著名なオペラ作曲家の著名な音楽写本のコレクションであり、デジタル化されている。
このプロセスでは,ノート,ステーブ,クリーフ,消去,作曲家の注釈など,写本に描かれた様々な音楽要素を表すサンプルを自動的に抽出することができる。
デジタル化ノイズと実際の音楽要素を区別するために、これらの画像のサブセットを慎重にグループ化し、複数の個人によって複数のクラスにラベル付けした。
アノテーションの一貫性を評価した後、識別された音楽要素を区別するために、複数のニューラルネットワークベースの分類器を訓練した。
本研究の主な目的は,これらの分類器の信頼性を評価することである。
これらの実験で使用される手動のアノテーション、モデル、ソースコードによって補完されるデータセットは、レプリケーション目的で一般にアクセス可能である。
関連論文リスト
- Self-Supervised Contrastive Learning for Robust Audio-Sheet Music
Retrieval Systems [3.997809845676912]
自己指導型コントラスト学習は、実際の音楽コンテンツからの注釈付きデータの不足を軽減することができることを示す。
クロスモーダルなピース識別の高レベルなタスクにスニペットを埋め込む。
本研究では,実際の音楽データが存在する場合,検索品質が30%から100%に向上することが観察された。
論文 参考訳(メタデータ) (2023-09-21T14:54:48Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - RMSSinger: Realistic-Music-Score based Singing Voice Synthesis [56.51475521778443]
RMS-SVSは、異なる音符タイプでリアル音楽のスコアを与えられた高品質な歌声を生成することを目的としている。
RMS-SVS方式であるRMSSingerを提案する。
RMSSingerでは,時間を要する音素の持続時間アノテーションと複雑な音素レベルのメルノートアライメントを避けるために,単語レベルのモデリングを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:57:51Z) - Melody transcription via generative pre-training [86.08508957229348]
メロディの書き起こしの鍵となる課題は、様々な楽器のアンサンブルや音楽スタイルを含む幅広いオーディオを処理できる方法を構築することである。
この課題に対処するために、広帯域オーディオの生成モデルであるJukebox(Dhariwal et al. 2020)の表現を活用する。
広義音楽のクラウドソースアノテーションから50ドル(約5,400円)のメロディ書き起こしを含む新しいデータセットを導出する。
論文 参考訳(メタデータ) (2022-12-04T18:09:23Z) - A Dataset for Greek Traditional and Folk Music: Lyra [69.07390994897443]
本稿では,80時間程度で要約された1570曲を含むギリシャの伝統音楽と民俗音楽のデータセットについて述べる。
このデータセットにはYouTubeのタイムスタンプ付きリンクが組み込まれており、オーディオやビデオの検索や、インスツルメンテーション、地理、ジャンルに関する豊富なメタデータ情報が含まれている。
論文 参考訳(メタデータ) (2022-11-21T14:15:43Z) - Music-to-Text Synaesthesia: Generating Descriptive Text from Music
Recordings [36.090928638883454]
音楽からテキストへの合成は、音楽録音から記述的なテキストを同じ感情で生成し、さらに理解することを目的としている。
音楽録音の内容を記述可能な文を生成するための計算モデルを構築した。
非差別的なクラシック音楽に対処するために,グループトポロジ保存損失を設計する。
論文 参考訳(メタデータ) (2022-10-02T06:06:55Z) - Lyric document embeddings for music tagging [0.38233569758620045]
本研究では,音楽タギングを目的とした楽曲の歌詞を定次元的特徴に組み込む実験的検討を行った。
数千万曲の産業規模データセット上で,トークンレベルと文書レベル表現の5つの計算方法と4つの計算方法が訓練されている。
平均的な単語埋め込みは、多くの下流のメトリクスにおいて、より複雑なアーキテクチャよりも優れています。
論文 参考訳(メタデータ) (2021-11-29T11:02:24Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
本稿では,異なる種類の記憶機構(メモリセル)について評価し,音楽合成分野におけるその性能について検討する。
提案したアーキテクチャの性能を自動評価するために,定量的な測定値のセットが提示される。
論文 参考訳(メタデータ) (2020-12-02T14:19:19Z) - Deep Composer Classification Using Symbolic Representation [6.656753488329095]
本研究では,シンボリックドメイン上で作曲家を分類するために,ディープニューラルネットワークを訓練する。
このモデルでは、2チャンネルの2次元入力をMIDIレコードから変換し、シングルラベルの分類を行う。
MAESTROデータセットで行った実験では、13種類の作曲家を分類するためにF1値0.8333を報告した。
論文 参考訳(メタデータ) (2020-10-02T07:40:44Z) - Vector-Quantized Timbre Representation [53.828476137089325]
本稿では, スペクトル特性の近似分解を生成的特徴の集合で学習することにより, 個々の音色をより柔軟に合成することを目的とする。
音量分布の量子化表現を学習するために、大音量から切り離された離散潜在空間を持つオートエンコーダを導入する。
オーケストラ楽器と歌唱音声間の音声の翻訳結果と、ボーカルの模倣音から楽器への変換結果について詳述する。
論文 参考訳(メタデータ) (2020-07-13T12:35:45Z) - Exploring Inherent Properties of the Monophonic Melody of Songs [10.055143995729415]
本稿では,音韻メロディの解釈可能な特徴の集合を計算目的で提案する。
これらの特徴は数学的形式だけでなく、作曲家の直観にも考慮されている。
これらの特徴は、合唱的な作曲の実践であっても、多くのジャンルの歌において普遍的に人々によって考慮されている。
論文 参考訳(メタデータ) (2020-03-20T14:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。