Realtime Generation of Streamliners with Large Language Models
- URL: http://arxiv.org/abs/2408.10268v1
- Date: Fri, 16 Aug 2024 14:17:26 GMT
- Title: Realtime Generation of Streamliners with Large Language Models
- Authors: Florentina Voboril, Vaidyanathan Peruvemba Ramaswamy, Stefan Szeider,
- Abstract summary: This paper presents the novel method for generating streamliners in constraint programming using Large Language Models (LLMs)
StreamLLM generates streamliners for problems specified in the MiniZinc constraint programming language.
- Score: 20.580584407211486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents the novel method StreamLLM for generating streamliners in constraint programming using Large Language Models (LLMs). Streamliners are constraints that narrow the search space, enhancing the speed and feasibility of solving complex problems. Traditionally, streamliners were crafted manually or generated through systematically combined atomic constraints with high-effort offline testing. Our approach uses LLMs to propose effective streamliners. Our system StreamLLM generates streamlines for problems specified in the MiniZinc constraint programming language and integrates feedback to the LLM with quick empirical tests. Our rigorous empirical evaluation involving ten problems with several hundreds of test instances shows robust results that are highly encouraging, showcasing the transforming power of LLMs in the domain of constraint programming.
Related papers
- Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Combining LLM Code Generation with Formal Specifications and Reactive Program Synthesis [0.7580487359358722]
Large Language Models (LLMs) struggle with accuracy and are unsuitable for high-risk applications.
We introduce a solution that divides the code generation into two parts; one to be handled by an LLM and one to be handled by formal methods-based program synthesis.
arXiv Detail & Related papers (2024-09-18T15:59:06Z) - HITS: High-coverage LLM-based Unit Test Generation via Method Slicing [37.43624865049592]
Large language models (LLMs) have behaved well in generating unit tests for Java projects.
However, the performance for covering the complex focal methods within the projects is poor.
We propose decomposing the focal methods into slices and asking the LLM to generate test cases slice by slice.
arXiv Detail & Related papers (2024-08-21T04:14:26Z) - Open-domain Implicit Format Control for Large Language Model Generation [52.83173553689678]
We introduce a novel framework for controlled generation in large language models (LLMs)
This study investigates LLMs' capabilities to follow open-domain, one-shot constraints and replicate the format of the example answers.
We also develop a dataset collection methodology for supervised fine-tuning that enhances the open-domain format control of LLMs without degrading output quality.
arXiv Detail & Related papers (2024-08-08T11:51:45Z) - FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping [49.66872823080736]
Autoregressive Large Language Models (e.g., LLaMa, GPTs) are omnipresent achieving remarkable success in language understanding and generation.
To mitigate overload incurred during generation, several early-exit and layer-dropping strategies have been proposed.
We propose FFN-SkipLLM, which is an input-adaptive feed-forward skipping strategy.
arXiv Detail & Related papers (2024-04-05T02:35:43Z) - Language Rectified Flow: Advancing Diffusion Language Generation with Probabilistic Flows [53.31856123113228]
This paper proposes Language Rectified Flow (ours)
Our method is based on the reformulation of the standard probabilistic flow models.
Experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many NLP tasks.
arXiv Detail & Related papers (2024-03-25T17:58:22Z) - Online Cascade Learning for Efficient Inference over Streams [9.516197133796437]
Large Language Models (LLMs) have a natural role in answering complex queries about data streams.
We propose online cascade learning, the first approach to address this challenge.
We formulate the task of learning cascades online as an imitation-learning problem.
arXiv Detail & Related papers (2024-02-07T01:46:50Z) - Extending Context Window of Large Language Models via Semantic
Compression [21.35020344956721]
Large Language Models (LLMs) often impose limitations on the length of the text input to ensure the generation of fluent and relevant responses.
We propose a novel semantic compression method that enables generalization to texts 6-8 times longer, without incurring significant computational costs or requiring fine-tuning.
arXiv Detail & Related papers (2023-12-15T07:04:33Z) - FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models [79.62191017182518]
FollowBench is a benchmark for Fine-grained Constraints Following Benchmark for Large Language Models.
We introduce a Multi-level mechanism that incrementally adds a single constraint to the initial instruction at each increased level.
By evaluating 13 popular LLMs on FollowBench, we highlight the weaknesses of LLMs in instruction following and point towards potential avenues for future work.
arXiv Detail & Related papers (2023-10-31T12:32:38Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.