Boolean Matrix Logic Programming
- URL: http://arxiv.org/abs/2408.10369v2
- Date: Sun, 25 Aug 2024 20:06:45 GMT
- Title: Boolean Matrix Logic Programming
- Authors: Lun Ai, Stephen H. Muggleton,
- Abstract summary: We describe a datalog query evaluation approach based on efficient and composable matrix modules.
We develop two novel BMLP modules for bottom-up manipulation on linear dyadic recursive datalog programs.
Our empirical results demonstrate that these modules outperform general-purpose and specialised systems by factors of 30x and 9x, respectively.
- Score: 5.847084649531298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a datalog query evaluation approach based on efficient and composable boolean matrix manipulation modules. We first define an overarching problem, Boolean Matrix Logic Programming (BMLP), which uses boolean matrices as an alternative computation to evaluate datalog programs. We develop two novel BMLP modules for bottom-up inferences on linear dyadic recursive datalog programs, and show how additional modules can extend this capability to compute both linear and non-linear recursive datalog programs of arity two. Our empirical results demonstrate that these modules outperform general-purpose and specialised systems by factors of 30x and 9x, respectively, when evaluating large programs with millions of facts. This boolean matrix approach significantly enhances the efficiency of datalog querying to support logic programming techniques.
Related papers
- Simulating Petri nets with Boolean Matrix Logic Programming [4.762323642506732]
We introduce a novel approach to deal with the limitations of high-level symbol manipulations.
Within this framework, we propose two novel BMLP algorithms for a class of Petri nets known as elementary nets.
We demonstrate empirically that BMLP algorithms can evaluate these programs 40 times faster than tabled B-Prolog, SWI-Prolog, XSB-Prolog and Clingo.
arXiv Detail & Related papers (2024-05-18T23:17:00Z) - Maximum Independent Set: Self-Training through Dynamic Programming [56.670639478539485]
This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP)
We propose a DP-like recursive algorithm based on GNNs that firstly constructs two smaller sub-graphs, predicts the one with the larger MIS, and then uses it in the next recursion call.
Annotating comparisons of different graphs concerning their MIS size leads to a self-training process that results in more accurate self-annotation of the comparisons and vice versa.
arXiv Detail & Related papers (2023-10-28T10:58:25Z) - Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
We study matrix estimation problems arising in reinforcement learning (RL) with low-rank structure.
In low-rank bandits, the matrix to be recovered specifies the expected arm rewards, and for low-rank Markov Decision Processes (MDPs), it may for example characterize the transition kernel of the MDP.
We show that simple spectral-based matrix estimation approaches efficiently recover the singular subspaces of the matrix and exhibit nearly-minimal entry-wise error.
arXiv Detail & Related papers (2023-10-10T17:06:41Z) - Efficiently Factorizing Boolean Matrices using Proximal Gradient Descent [31.00422943397691]
We introduce a novel elastic-binary regularizer to relax BMF continuously.
We show that our method works well in practice on synthetic and real-world data.
arXiv Detail & Related papers (2023-07-14T20:22:21Z) - Enhancing Datalog Reasoning with Hypertree Decompositions [17.868595375154506]
We provide algorithms that exploit hypertree decompositions for the materialisation and incremental evaluation of Datalog programs.
We combine this approach with standard Datalog reasoning algorithms in a modular fashion so that the overhead caused by the decompositions is reduced.
arXiv Detail & Related papers (2023-05-11T14:51:16Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
We generalize Runge-Kutta neural network to a recurrent neural network (R2N2) superstructure for the design of customized iterative algorithms.
We demonstrate that regular training of the weight parameters inside the proposed superstructure on input/output data of various computational problem classes yields similar iterations to Krylov solvers for linear equation systems, Newton-Krylov solvers for nonlinear equation systems, and Runge-Kutta solvers for ordinary differential equations.
arXiv Detail & Related papers (2022-11-22T16:30:33Z) - Seminaive Materialisation in DatalogMTL [10.850687097496373]
DatalogMTL is an extension of Datalog with metric temporal operators.
We propose a materialisation-based procedure to minimise redundant computation.
Our experiments show that our optimised seminaive strategy for DatalogMTL is able to significantly reduce materialisation times.
arXiv Detail & Related papers (2022-08-15T10:04:44Z) - Linear Temporal Logic Modulo Theories over Finite Traces (Extended
Version) [72.38188258853155]
This paper studies Linear Temporal Logic over Finite Traces (LTLf)
proposition letters are replaced with first-order formulas interpreted over arbitrary theories.
The resulting logic, called Satisfiability Modulo Theories (LTLfMT), is semi-decidable.
arXiv Detail & Related papers (2022-04-28T17:57:33Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
Algorithm unfolding creates an interpretable and parsimonious neural network architecture by implementing each iteration of a model-based algorithm as a neural layer.
In this paper, leveraging a recent linear algebraic theorem called Gershgorin disc perfect alignment (GDPA), we unroll a projection-free algorithm for semi-definite programming relaxation (SDR) of a binary graph.
Experimental results show that our unrolled network outperformed pure model-based graph classifiers, and achieved comparable performance to pure data-driven networks but using far fewer parameters.
arXiv Detail & Related papers (2021-09-10T07:01:15Z) - LogicalFactChecker: Leveraging Logical Operations for Fact Checking with
Graph Module Network [111.24773949467567]
We propose LogicalFactChecker, a neural network approach capable of leveraging logical operations for fact checking.
It achieves the state-of-the-art performance on TABFACT, a large-scale, benchmark dataset.
arXiv Detail & Related papers (2020-04-28T17:04:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.