Maximum Independent Set: Self-Training through Dynamic Programming
- URL: http://arxiv.org/abs/2310.18672v1
- Date: Sat, 28 Oct 2023 10:58:25 GMT
- Title: Maximum Independent Set: Self-Training through Dynamic Programming
- Authors: Lorenzo Brusca, Lars C.P.M. Quaedvlieg, Stratis Skoulakis, Grigorios G
Chrysos, Volkan Cevher
- Abstract summary: This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP)
We propose a DP-like recursive algorithm based on GNNs that firstly constructs two smaller sub-graphs, predicts the one with the larger MIS, and then uses it in the next recursion call.
Annotating comparisons of different graphs concerning their MIS size leads to a self-training process that results in more accurate self-annotation of the comparisons and vice versa.
- Score: 56.670639478539485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a graph neural network (GNN) framework for solving the
maximum independent set (MIS) problem, inspired by dynamic programming (DP).
Specifically, given a graph, we propose a DP-like recursive algorithm based on
GNNs that firstly constructs two smaller sub-graphs, predicts the one with the
larger MIS, and then uses it in the next recursive call. To train our
algorithm, we require annotated comparisons of different graphs concerning
their MIS size. Annotating the comparisons with the output of our algorithm
leads to a self-training process that results in more accurate self-annotation
of the comparisons and vice versa. We provide numerical evidence showing the
superiority of our method vs prior methods in multiple synthetic and real-world
datasets.
Related papers
- Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - Robust Graph Matching Using An Unbalanced Hierarchical Optimal Transport Framework [30.05543844763625]
We propose a novel and robust graph matching method based on an unbalanced hierarchical optimal transport framework.
We make the first attempt to exploit cross-modal alignment in graph matching.
Experiments on various graph matching tasks demonstrate the superiority and robustness of our method compared to state-of-the-art approaches.
arXiv Detail & Related papers (2023-10-18T16:16:53Z) - A Simple and Scalable Graph Neural Network for Large Directed Graphs [11.792826520370774]
We investigate various combinations of node representations and edge direction awareness within an input graph.
In response, we propose a simple yet holistic classification method A2DUG.
We demonstrate that A2DUG stably performs well on various datasets and improves the accuracy up to 11.29 compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-06-14T06:24:58Z) - Discrete Graph Auto-Encoder [52.50288418639075]
We introduce a new framework named Discrete Graph Auto-Encoder (DGAE)
We first use a permutation-equivariant auto-encoder to convert graphs into sets of discrete latent node representations.
In the second step, we sort the sets of discrete latent representations and learn their distribution with a specifically designed auto-regressive model.
arXiv Detail & Related papers (2023-06-13T12:40:39Z) - Improved Exact and Heuristic Algorithms for Maximum Weight Clique [1.2074552857379273]
We propose improved exact and labeling algorithms for solving the maximum weight clique problem.
Our algorithms interleave successful techniques with novel data reduction rules that use local graph structure.
We evaluate our algorithms on a range of synthetic and real-world graphs, and find that they outperform the current state of the art on most inputs.
arXiv Detail & Related papers (2023-02-01T14:02:06Z) - GLAN: A Graph-based Linear Assignment Network [29.788755291070462]
We propose a learnable linear assignment solver based on deep graph networks.
The experimental results on a synthetic dataset reveal that our method outperforms state-of-the-art baselines.
We also embed the proposed solver into a popular multi-object tracking (MOT) framework to train the tracker in an end-to-end manner.
arXiv Detail & Related papers (2022-01-05T13:18:02Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
Data association across frames is at the core of Multiple Object Tracking (MOT) task.
Existing methods mostly ignore the context information among tracklets and intra-frame detections.
We propose a novel learnable graph matching method to address these issues.
arXiv Detail & Related papers (2021-03-30T08:58:45Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
This work introduces a new MAP-solver, based on the popular Dual Block-Coordinate Ascent principle.
Surprisingly, by making a small change to the low-performing solver, we derive the new solver MPLP++ that significantly outperforms all existing solvers by a large margin.
arXiv Detail & Related papers (2020-04-16T16:20:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.