Are LLMs Any Good for High-Level Synthesis?
- URL: http://arxiv.org/abs/2408.10428v1
- Date: Mon, 19 Aug 2024 21:40:28 GMT
- Title: Are LLMs Any Good for High-Level Synthesis?
- Authors: Yuchao Liao, Tosiron Adegbija, Roman Lysecky,
- Abstract summary: Large Language Models (LLMs) can streamline or replace the High-Level Synthesis (HLS) process.
LLMs can understand natural language specifications and translate C code or natural language specifications.
This study aims to illuminate the role of LLMs in HLS, identifying promising directions for optimized hardware design in applications such as AI acceleration, embedded systems, and high-performance computing.
- Score: 1.3927943269211591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing complexity and demand for faster, energy-efficient hardware designs necessitate innovative High-Level Synthesis (HLS) methodologies. This paper explores the potential of Large Language Models (LLMs) to streamline or replace the HLS process, leveraging their ability to understand natural language specifications and refactor code. We survey the current research and conduct experiments comparing Verilog designs generated by a standard HLS tool (Vitis HLS) with those produced by LLMs translating C code or natural language specifications. Our evaluation focuses on quantifying the impact on performance, power, and resource utilization, providing an assessment of the efficiency of LLM-based approaches. This study aims to illuminate the role of LLMs in HLS, identifying promising directions for optimized hardware design in applications such as AI acceleration, embedded systems, and high-performance computing.
Related papers
- FVEval: Understanding Language Model Capabilities in Formal Verification of Digital Hardware [4.480157114854711]
We present FVEval, the first comprehensive benchmark for characterizing large language models (LLMs) performance in tasks pertaining to formal verification (FV)
The benchmark consists of three sub-tasks that measure LLM capabilities at different levels.
We present both collections of expert-written verification collateral and methodologies to scalably generate synthetic examples aligned with FV.
arXiv Detail & Related papers (2024-10-15T21:48:57Z) - Contemporary Model Compression on Large Language Models Inference [7.307436175842646]
Large Language Models (LLMs) have revolutionized natural language processing by achieving state-of-the-art results across a variety of tasks.
The computational demands of LLM inference, including high memory consumption and slow processing speeds, pose significant challenges for real-world applications.
This survey explores techniques in model compression that address these challenges by reducing the size and computational requirements of LLMs.
arXiv Detail & Related papers (2024-09-03T15:35:01Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - New Solutions on LLM Acceleration, Optimization, and Application [14.995654657013741]
Large Language Models (LLMs) have become extremely potent instruments with exceptional capacities for comprehending and producing human-like text in a range of applications.
However, the increasing size and complexity of LLMs present significant challenges in both training and deployment.
We provide a review of recent advancements and research directions aimed at addressing these challenges.
arXiv Detail & Related papers (2024-06-16T11:56:50Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Skip the Benchmark: Generating System-Level High-Level Synthesis Data using Generative Machine Learning [8.416553728391309]
High-Level Synthesis (HLS) Design Space Exploration (DSE) is a widely accepted approach for exploring optimal hardware solutions during the HLS process.
Several HLS benchmarks and datasets are available for the research community to evaluate their methodologies.
This paper proposes a novel approach, called Vaegan, that employs generative machine learning to generate synthetic data that is robust enough to support complex system-level HLS DSE experiments.
arXiv Detail & Related papers (2024-04-23T05:32:22Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
We focus on solving one of the most important tasks in the field of speech processing, with speech foundation encoders and large language models (LLM)
Recent works have complex designs such as compressing the output temporally for the speech encoder, tackling modal alignment for the projector, and utilizing parameter-efficient fine-tuning for the LLM.
We found that delicate designs are not necessary, while an embarrassingly simple composition of off-the-shelf speech encoder, LLM, and the only trainable linear projector is competent for the ASR task.
arXiv Detail & Related papers (2024-02-13T23:25:04Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
Large language models (LLMs) have revolutionized many areas by achieving state-of-the-art performance on downstream tasks.
Recent efforts have demonstrated that the LLMs are poor at solving sequential decision-making problems.
arXiv Detail & Related papers (2024-01-17T08:22:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.