CLIP-DPO: Vision-Language Models as a Source of Preference for Fixing Hallucinations in LVLMs
- URL: http://arxiv.org/abs/2408.10433v1
- Date: Mon, 19 Aug 2024 21:56:20 GMT
- Title: CLIP-DPO: Vision-Language Models as a Source of Preference for Fixing Hallucinations in LVLMs
- Authors: Yassine Ouali, Adrian Bulat, Brais Martinez, Georgios Tzimiropoulos,
- Abstract summary: Large Vision Language Models are prone to hallucinating details like objects and their properties or relations, limiting their real-world deployment.
We present CLIP-DPO, a preference optimization method that leverages contrastively pre-trained Vision-Language (VL) embedding models, such as CLIP, for DPO-based optimization of LVLMs.
- Score: 37.98496239547762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent successes, LVLMs or Large Vision Language Models are prone to hallucinating details like objects and their properties or relations, limiting their real-world deployment. To address this and improve their robustness, we present CLIP-DPO, a preference optimization method that leverages contrastively pre-trained Vision-Language (VL) embedding models, such as CLIP, for DPO-based optimization of LVLMs. Unlike prior works tackling LVLM hallucinations, our method does not rely on paid-for APIs, and does not require additional training data or the deployment of other external LVLMs. Instead, starting from the initial pool of supervised fine-tuning data, we generate a diverse set of predictions, which are ranked based on their CLIP image-text similarities, and then filtered using a robust rule-based approach to obtain a set of positive and negative pairs for DPO-based training. We applied CLIP-DPO fine-tuning to the MobileVLM-v2 family of models and to LlaVA-1.5, in all cases observing significant improvements in terms of hallucination reduction over baseline models. We also observe better performance for zero-shot classification, suggesting improved grounding capabilities, and verify that the original performance on standard LVLM benchmarks is overall preserved.
Related papers
- Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
Pre-trained large-scale language models (LLMs) excel at producing coherent articles, yet their outputs may be untruthful, toxic, or fail to align with user expectations.
Current approaches focus on using reinforcement learning with human feedback to improve model alignment.
We propose a method to enhance LLM alignment through fine-grained token-level supervision.
arXiv Detail & Related papers (2024-06-04T20:21:45Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Weak-to-Strong Extrapolation Expedites Alignment [135.12769233630362]
We propose a method called ExPO to boost models' alignment with human preference.
We demonstrate that ExPO consistently improves off-the-shelf DPO/RLHF models.
We shed light on the essence of ExPO amplifying the reward signal learned during alignment training.
arXiv Detail & Related papers (2024-04-25T17:39:50Z) - Aligning Modalities in Vision Large Language Models via Preference
Fine-tuning [67.62925151837675]
In this work, we frame the hallucination problem as an alignment issue, tackle it with preference tuning.
Specifically, we propose POVID to generate feedback data with AI models.
We use ground-truth instructions as the preferred response and a two-stage approach to generate dispreferred data.
In experiments across broad benchmarks, we show that we can not only reduce hallucinations, but improve model performance across standard benchmarks, outperforming prior approaches.
arXiv Detail & Related papers (2024-02-18T00:56:16Z) - ICDPO: Effectively Borrowing Alignment Capability of Others via
In-context Direct Preference Optimization [24.55845271377532]
Large Language Models rely on Human Preference Alignment to ensure the generation of safe content.
We propose a novel approach called In-Context Direct Preference Optimization (ICDPO)
ICDPO generates well-aligned responses as estimated by the aforementioned instant scorer, thereby enhancing the final performance.
arXiv Detail & Related papers (2024-02-14T17:14:34Z) - Mitigating Object Hallucination in Large Vision-Language Models via
Classifier-Free Guidance [56.04768229686853]
Large Vision-Language Models (LVLMs) tend to hallucinate non-existing objects in the images.
We introduce a framework called Mitigating hallucinAtion via classifieR-Free guIdaNcE (MARINE)
MARINE is both training-free and API-free, and can effectively and efficiently reduce object hallucinations during the generation process.
arXiv Detail & Related papers (2024-02-13T18:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.