Multimodal Preference Data Synthetic Alignment with Reward Model
- URL: http://arxiv.org/abs/2412.17417v1
- Date: Mon, 23 Dec 2024 09:29:40 GMT
- Title: Multimodal Preference Data Synthetic Alignment with Reward Model
- Authors: Robert Wijaya, Ngoc-Bao Nguyen, Ngai-Man Cheung,
- Abstract summary: We propose a new framework in generating synthetic data using a reward model as a proxy of human preference for effective multimodal alignment with DPO training.
Experiment results indicate that integrating selected synthetic data, such as from generative and rewards models can effectively reduce reliance on human-annotated data.
- Score: 23.978820500281213
- License:
- Abstract: Multimodal large language models (MLLMs) have significantly advanced tasks like caption generation and visual question answering by integrating visual and textual data. However, they sometimes produce misleading or hallucinate content due to discrepancies between their pre-training data and real user prompts. Existing approaches using Direct Preference Optimization (DPO) in vision-language tasks often rely on strong models like GPT-4 or CLIP to determine positive and negative responses. Here, we propose a new framework in generating synthetic data using a reward model as a proxy of human preference for effective multimodal alignment with DPO training. The resulting DPO dataset ranges from 2K to 9K image-text pairs, was evaluated on LLaVA-v1.5-7B, where our approach demonstrated substantial improvements in both the trustworthiness and reasoning capabilities of the base model across multiple hallucination and vision-language benchmark. The experiment results indicate that integrating selected synthetic data, such as from generative and rewards models can effectively reduce reliance on human-annotated data while enhancing MLLMs' alignment capability, offering a scalable solution for safer deployment.
Related papers
- CHiP: Cross-modal Hierarchical Direct Preference Optimization for Multimodal LLMs [107.21334626890713]
Multimodal Large Language Models (MLLMs) still struggle with hallucinations despite their impressive capabilities.
We propose a Cross-modal Hierarchical Direct Preference Optimization (CHiP) to address these limitations.
We evaluate CHiP through both quantitative and qualitative analyses, with results across multiple benchmarks demonstrating its effectiveness in reducing hallucinations.
arXiv Detail & Related papers (2025-01-28T02:05:38Z) - MIA-DPO: Multi-Image Augmented Direct Preference Optimization For Large Vision-Language Models [85.30735602813093]
Multi-Image Augmented Direct Preference Optimization (MIA-DPO) is a visual preference alignment approach that effectively handles multi-image inputs.
MIA-DPO mitigates the scarcity of diverse multi-image training data by extending single-image data with unrelated images arranged in grid collages or pic-in-pic formats.
arXiv Detail & Related papers (2024-10-23T07:56:48Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Understanding Alignment in Multimodal LLMs: A Comprehensive Study [46.33812471516309]
We analyze each aspect of preference alignment in Multimodal Large Language Models (MLLMs)
We show that combining offline and online methods can improve the performance of the model in certain scenarios.
We introduce a novel way of creating multimodal preference data called Bias-Driven Hallucination Sampling (BDHS)
arXiv Detail & Related papers (2024-07-02T17:55:03Z) - Auto Cherry-Picker: Learning from High-quality Generative Data Driven by Language [41.40908753726324]
Diffusion models can generate realistic and diverse images, potentially facilitating data availability for data-intensive perception tasks.
We present textbfAuto textbfCherry-textbfPicker (ACP), a novel framework that generates high-quality cross-modality training samples.
arXiv Detail & Related papers (2024-06-28T17:53:18Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Strengthening Multimodal Large Language Model with Bootstrapped Preference Optimization [25.290462963681257]
Multimodal Large Language Models (MLLMs) excel in generating responses based on visual inputs.
They often suffer from a bias towards generating responses similar to their pretraining corpus, overshadowing the importance of visual information.
We treat this bias as a "preference" for pretraining statistics, which hinders the model's grounding in visual input.
arXiv Detail & Related papers (2024-03-13T17:29:45Z) - Aligning Modalities in Vision Large Language Models via Preference
Fine-tuning [67.62925151837675]
In this work, we frame the hallucination problem as an alignment issue, tackle it with preference tuning.
Specifically, we propose POVID to generate feedback data with AI models.
We use ground-truth instructions as the preferred response and a two-stage approach to generate dispreferred data.
In experiments across broad benchmarks, we show that we can not only reduce hallucinations, but improve model performance across standard benchmarks, outperforming prior approaches.
arXiv Detail & Related papers (2024-02-18T00:56:16Z) - Silkie: Preference Distillation for Large Visual Language Models [56.10697821410489]
This paper explores preference distillation for large vision language models (LVLMs)
We first build a vision-language feedback dataset utilizing AI annotation.
We adopt GPT-4V to assess the generated outputs regarding helpfulness, visual faithfulness, and ethical considerations.
The resulting model Silkie, achieves 6.9% and 9.5% relative improvement on the MME benchmark regarding the perception and cognition capabilities.
arXiv Detail & Related papers (2023-12-17T09:44:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.