論文の概要: LSVOS Challenge 3rd Place Report: SAM2 and Cutie based VOS
- arxiv url: http://arxiv.org/abs/2408.10469v2
- Date: Wed, 21 Aug 2024 00:39:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 11:50:43.224731
- Title: LSVOS Challenge 3rd Place Report: SAM2 and Cutie based VOS
- Title(参考訳): LSVOSチャレンジ 第3位:SAM2とCutieベースのVOS
- Authors: Xinyu Liu, Jing Zhang, Kexin Zhang, Xu Liu, Lingling Li,
- Abstract要約: 我々は、これらの課題に対処するために、最先端(SOTA)モデルSAM2とCutieの長所を組み合わせる。
LSVOS チャレンジ VOS トラックの試験段階での J&F スコアは 0.7952 に達し, 総合3位となった。
- 参考スコア(独自算出の注目度): 25.894649323139987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video Object Segmentation (VOS) presents several challenges, including object occlusion and fragmentation, the dis-appearance and re-appearance of objects, and tracking specific objects within crowded scenes. In this work, we combine the strengths of the state-of-the-art (SOTA) models SAM2 and Cutie to address these challenges. Additionally, we explore the impact of various hyperparameters on video instance segmentation performance. Our approach achieves a J\&F score of 0.7952 in the testing phase of LSVOS challenge VOS track, ranking third overall.
- Abstract(参考訳): ビデオオブジェクトセグメンテーション(VOS)は、オブジェクトの隠蔽と断片化、オブジェクトの非出現と再出現、混雑したシーン内の特定のオブジェクトの追跡など、いくつかの課題を提示している。
本研究では,これらの課題に対処するために,最新技術モデル(SOTA)SAM2とCutieの長所を組み合わせる。
さらに,ビデオインスタンスのセグメンテーション性能に及ぼす各種ハイパーパラメータの影響についても検討する。
LSVOS チャレンジ VOS トラックの試験段階での J&F スコアは 0.7952 となり, 総合3位となった。
関連論文リスト
- LSVOS Challenge Report: Large-scale Complex and Long Video Object Segmentation [124.50550604020684]
本稿では,ECCV 2024ワークショップと連携して,第6回大規模ビデオオブジェクト(LSVOS)チャレンジを紹介する。
今年の課題には、ビデオオブジェクト(VOS)とビデオオブジェクト(RVOS)の2つのタスクが含まれる。
今年の挑戦は、8か国以上の20以上の機関から129の登録チームを引き寄せた。
論文 参考訳(メタデータ) (2024-09-09T17:45:45Z) - Discriminative Spatial-Semantic VOS Solution: 1st Place Solution for 6th LSVOS [68.47681139026666]
ビデオオブジェクトセグメンテーション(VOS)はコンピュータビジョンにおいて重要な課題である。
現在のVOS法は複雑なシーンと長い物体の動きに苦しむ。
本報告では,空間時空間VOSモデルについて述べる。
論文 参考訳(メタデータ) (2024-08-29T10:47:17Z) - Video Object Segmentation via SAM 2: The 4th Solution for LSVOS Challenge VOS Track [28.52754012142431]
Segment Anything Model 2 (SAM2) は、画像やビデオにおける迅速な視覚的セグメンテーションを解決するための基礎モデルである。
SAM 2は、ユーザインタラクションを通じてモデルとデータを改善するデータエンジンを構築し、これまでで最大のビデオセグメンテーションデータセットを収集している。
訓練セットを微調整することなく、SAM 2はテストセットで75.79 J&Fを獲得し、第6回LSVOSチャレンジVOSトラックでは4位となった。
論文 参考訳(メタデータ) (2024-08-19T16:13:14Z) - 3D-Aware Instance Segmentation and Tracking in Egocentric Videos [107.10661490652822]
エゴセントリックなビデオは、3Dシーンの理解にユニークな課題を提示する。
本稿では,一対一のビデオにおけるインスタンスのセグメンテーションとトラッキングに対する新しいアプローチを提案する。
空間的および時間的手がかりを取り入れることで、最先端の2D手法と比較して優れた性能が得られる。
論文 参考訳(メタデータ) (2024-08-19T10:08:25Z) - 3rd Place Solution for MOSE Track in CVPR 2024 PVUW workshop: Complex Video Object Segmentation [63.199793919573295]
ビデオオブジェクト(VOS)はコンピュータビジョンにおいて重要なタスクであり、ビデオフレーム間の背景から前景オブジェクトを区別することに焦点を当てている。
我々の研究はCutieモデルからインスピレーションを得ており、オブジェクトメモリ、メモリフレームの総数、および入力解像度がセグメンテーション性能に与える影響について検討する。
論文 参考訳(メタデータ) (2024-06-06T00:56:25Z) - Tracking through Containers and Occluders in the Wild [32.86030395660071]
重い閉塞と封じ込めによる視覚追跡のための新しいベンチマークとモデルである$textbfTCOW$を紹介した。
我々は、教師付き学習とモデル性能の構造化評価の両方をサポートするために、合成データセットと注釈付き実データセットの混合を作成する。
最近の2つのトランスフォーマーベースビデオモデルを評価し,タスク変動の特定の設定下でターゲットを驚くほど追跡できるが,トラッキングモデルが真のオブジェクト永続性(permanence)の概念を獲得したと主張するまでには,かなりの性能差が残っていることを発見した。
論文 参考訳(メタデータ) (2023-05-04T17:59:58Z) - MOSE: A New Dataset for Video Object Segmentation in Complex Scenes [106.64327718262764]
ビデオオブジェクトセグメンテーション(VOS)は、ビデオクリップシーケンス全体を通して特定のオブジェクトをセグメンテーションすることを目的としている。
最先端のVOSメソッドは、既存のデータセット上で優れたパフォーマンス(例えば、90%以上のJ&F)を達成した。
我々は、複雑な環境でのトラッキングとセグメンテーションを研究するために、coMplex video Object SEgmentation (MOSE)と呼ばれる新しいVOSデータセットを収集する。
論文 参考訳(メタデータ) (2023-02-03T17:20:03Z) - Scalable Video Object Segmentation with Identification Mechanism [125.4229430216776]
本稿では,半教師付きビデオオブジェクト(VOS)のスケーラブルで効果的なマルチオブジェクトモデリングを実現する上での課題について検討する。
AOT(Associating Objects with Transformers)とAOST(Associating Objects with Scalable Transformers)の2つの革新的なアプローチを提案する。
当社のアプローチは最先端の競合に勝って,6つのベンチマークすべてにおいて,例外的な効率性とスケーラビリティを一貫して示しています。
論文 参考訳(メタデータ) (2022-03-22T03:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。