Evaluation Framework for AI-driven Molecular Design of Multi-target Drugs: Brain Diseases as a Case Study
- URL: http://arxiv.org/abs/2408.10482v1
- Date: Tue, 20 Aug 2024 01:42:16 GMT
- Title: Evaluation Framework for AI-driven Molecular Design of Multi-target Drugs: Brain Diseases as a Case Study
- Authors: Arthur Cerveira, Frederico Kremer, Darling de Andrade Lourenço, Ulisses B CorrĂȘa,
- Abstract summary: Multi-target Drug Discovery (MTDD) is an emerging paradigm for discovering drugs against complex disorders.
This work proposes an evaluation framework for molecule generation techniques in MTDD scenarios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread application of Artificial Intelligence (AI) techniques has significantly influenced the development of new therapeutic agents. These computational methods can be used to design and predict the properties of generated molecules. Multi-target Drug Discovery (MTDD) is an emerging paradigm for discovering drugs against complex disorders that do not respond well to more traditional target-specific treatments, such as central nervous system, immune system, and cardiovascular diseases. Still, there is yet to be an established benchmark suite for assessing the effectiveness of AI tools for designing multi-target compounds. Standardized benchmarks allow for comparing existing techniques and promote rapid research progress. Hence, this work proposes an evaluation framework for molecule generation techniques in MTDD scenarios, considering brain diseases as a case study. Our methodology involves using large language models to select the appropriate molecular targets, gathering and preprocessing the bioassay datasets, training quantitative structure-activity relationship models to predict target modulation, and assessing other essential drug-likeness properties for implementing the benchmarks. Additionally, this work will assess the performance of four deep generative models and evolutionary algorithms over our benchmark suite. In our findings, both evolutionary algorithms and generative models can achieve competitive results across the proposed benchmarks.
Related papers
- Assessing Reusability of Deep Learning-Based Monotherapy Drug Response Prediction Models Trained with Omics Data [43.57729817547386]
Cancer drug response prediction models present a promising approach towards precision oncology.
Deep learning (DL) methods have shown great potential in this area.
This highlights the need for reusable and adaptable models that can be improved and tested by the wider scientific community.
arXiv Detail & Related papers (2024-09-18T16:08:28Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - Rethinking Model Prototyping through the MedMNIST+ Dataset Collection [0.11999555634662634]
This work presents a benchmark for the MedMNIST+ database to diversify the evaluation landscape.
We conduct a thorough analysis of common convolutional neural networks (CNNs) and Transformer-based architectures, for medical image classification.
Our findings suggest that computationally efficient training schemes and modern foundation models hold promise in bridging the gap between expensive end-to-end training and more resource-refined approaches.
arXiv Detail & Related papers (2024-04-24T10:19:25Z) - Latent Chemical Space Searching for Plug-in Multi-objective Molecule Generation [9.442146563809953]
We develop a versatile 'plug-in' molecular generation model that incorporates objectives related to target affinity, drug-likeness, and synthesizability.
We identify PSO-ENP as the optimal variant for multi-objective molecular generation and optimization.
arXiv Detail & Related papers (2024-04-10T02:37:24Z) - NeuroBench: A Framework for Benchmarking Neuromorphic Computing Algorithms and Systems [50.101188703826686]
We present NeuroBench: a benchmark framework for neuromorphic computing algorithms and systems.
NeuroBench is a collaboratively-designed effort from an open community of researchers across industry and academia.
arXiv Detail & Related papers (2023-04-10T15:12:09Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - A biologically-inspired evaluation of molecular generative machine
learning [17.623886600638716]
A novel biologically-inspired benchmark for the evaluation of molecular generative models is proposed.
We propose a recreation metric, apply drug-target affinity prediction and molecular docking as complementary techniques for the evaluation of generative outputs.
arXiv Detail & Related papers (2022-08-20T11:01:10Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Multi-View Self-Attention for Interpretable Drug-Target Interaction
Prediction [4.307720252429733]
In machine learning approaches, the numerical representation of molecules is critical to the performance of the model.
We propose a self-attention-based multi-view representation learning approach for modeling drug-target interactions.
arXiv Detail & Related papers (2020-05-01T14:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.