Single-cell Curriculum Learning-based Deep Graph Embedding Clustering
- URL: http://arxiv.org/abs/2408.10511v1
- Date: Tue, 20 Aug 2024 03:20:13 GMT
- Title: Single-cell Curriculum Learning-based Deep Graph Embedding Clustering
- Authors: Huifa Li, Jie Fu, Xinpeng Ling, Zhiyu Sun, Kuncan Wang, Zhili Chen,
- Abstract summary: We propose a single-cell curriculum learning-based deep graph embedding clustering (scCLG)
We first propose a Chebyshev graph convolutional autoencoder with multi-decoder (ChebAE) that combines three optimization objectives corresponding to three decoders.
We employ a selective training strategy to train GNN based on the features and entropy of nodes and prune the difficult nodes based on the difficulty scores to keep the high-quality graph.
- Score: 21.328135630638343
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The swift advancement of single-cell RNA sequencing (scRNA-seq) technologies enables the investigation of cellular-level tissue heterogeneity. Cell annotation significantly contributes to the extensive downstream analysis of scRNA-seq data. However, The analysis of scRNA-seq for biological inference presents challenges owing to its intricate and indeterminate data distribution, characterized by a substantial volume and a high frequency of dropout events. Furthermore, the quality of training samples varies greatly, and the performance of the popular scRNA-seq data clustering solution GNN could be harmed by two types of low-quality training nodes: 1) nodes on the boundary; 2) nodes that contribute little additional information to the graph. To address these problems, we propose a single-cell curriculum learning-based deep graph embedding clustering (scCLG). We first propose a Chebyshev graph convolutional autoencoder with multi-decoder (ChebAE) that combines three optimization objectives corresponding to three decoders, including topology reconstruction loss of cell graphs, zero-inflated negative binomial (ZINB) loss, and clustering loss, to learn cell-cell topology representation. Meanwhile, we employ a selective training strategy to train GNN based on the features and entropy of nodes and prune the difficult nodes based on the difficulty scores to keep the high-quality graph. Empirical results on a variety of gene expression datasets show that our model outperforms state-of-the-art methods.
Related papers
- scASDC: Attention Enhanced Structural Deep Clustering for Single-cell RNA-seq Data [5.234149080137045]
High sparsity and complex noise patterns inherent in scRNA-seq data present significant challenges for traditional clustering methods.
We propose a deep clustering method, Attention-Enhanced Structural Deep Embedding Graph Clustering (scASDC)
scASDC integrates multiple advanced modules to improve clustering accuracy and robustness.
arXiv Detail & Related papers (2024-08-09T09:10:36Z) - scCDCG: Efficient Deep Structural Clustering for single-cell RNA-seq via Deep Cut-informed Graph Embedding [12.996418312603284]
scCDCG (single-cell RNA-seq Clustering via Deep Cut-informed Graph) is a novel framework designed for efficient and accurate clustering of scRNA-seq data.
scCDCG comprises three main components: (i) A graph embedding module utilizing deep cut-informed techniques, which effectively captures intercellular high-order structural information.
(ii) A self-supervised learning module guided by optimal transport, tailored to accommodate the unique complexities of scRNA-seq data.
arXiv Detail & Related papers (2024-04-09T09:46:17Z) - Cell Graph Transformer for Nuclei Classification [78.47566396839628]
We develop a cell graph transformer (CGT) that treats nodes and edges as input tokens to enable learnable adjacency and information exchange among all nodes.
Poorly features can lead to noisy self-attention scores and inferior convergence.
We propose a novel topology-aware pretraining method that leverages a graph convolutional network (GCN) to learn a feature extractor.
arXiv Detail & Related papers (2024-02-20T12:01:30Z) - scBiGNN: Bilevel Graph Representation Learning for Cell Type
Classification from Single-cell RNA Sequencing Data [62.87454293046843]
Graph neural networks (GNNs) have been widely used for automatic cell type classification.
scBiGNN comprises two GNN modules to identify cell types.
scBiGNN outperforms a variety of existing methods for cell type classification from scRNA-seq data.
arXiv Detail & Related papers (2023-12-16T03:54:26Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
Gene regulatory networks (GRN) describe interactions between genes and their products that control gene expression and cellular function.
Existing methods either focus on challenge (1), identifying cyclic structure from dynamics, or on challenge (2) learning complex Bayesian posteriors over DAGs, but not both.
In this paper we leverage the fact that it is possible to estimate the "velocity" of gene expression with RNA velocity techniques to develop an approach that addresses both challenges.
arXiv Detail & Related papers (2023-02-08T16:36:40Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
This paper provides the first theoretical characterization of joint edge-model sparse learning for graph neural networks (GNNs)
It proves analytically that both sampling important nodes and pruning neurons with the lowest-magnitude can reduce the sample complexity and improve convergence without compromising the test accuracy.
arXiv Detail & Related papers (2023-02-06T16:54:20Z) - Generalization Guarantee of Training Graph Convolutional Networks with
Graph Topology Sampling [83.77955213766896]
Graph convolutional networks (GCNs) have recently achieved great empirical success in learning graphstructured data.
To address its scalability issue, graph topology sampling has been proposed to reduce the memory and computational cost of training Gs.
This paper provides first theoretical justification of graph topology sampling in training (up to) three-layer GCNs.
arXiv Detail & Related papers (2022-07-07T21:25:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.