論文の概要: Integrating Multi-Modal Input Token Mixer Into Mamba-Based Decision Models: Decision MetaMamba
- arxiv url: http://arxiv.org/abs/2408.10517v2
- Date: Fri, 22 Nov 2024 01:42:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:01:51.006845
- Title: Integrating Multi-Modal Input Token Mixer Into Mamba-Based Decision Models: Decision MetaMamba
- Title(参考訳): マルチモーダル入力トークンミキサーをマンバベース決定モデルに統合する:決定メタマンバ
- Authors: Wall Kim,
- Abstract要約: 状態空間モデル(SSM)を用いたシーケンスモデリングは、様々なタスクにおけるトランスフォーマーよりもパフォーマンスが優れていることを示した。
しかし、最先端のSSMであるMambaに基づく決定モデルは、拡張された決定変換器よりも優れた性能を達成できなかった。
本稿では,DMM(Decision MetaMamba)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Sequence modeling with State Space models (SSMs) has demonstrated performance surpassing that of Transformers in various tasks, raising expectations for their potential to outperform the Decision Transformer and its enhanced variants in offline reinforcement learning (RL). However, decision models based on Mamba, a state-of-the-art SSM, failed to achieve superior performance compared to these enhanced Decision Transformers. We hypothesize that this limitation arises from information loss during the selective scanning phase. To address this, we propose the Decision MetaMamba (DMM), which augments Mamba with a token mixer in its input layer. This mixer explicitly accounts for the multimodal nature of offline RL inputs, comprising state, action, and return-to-go. The DMM demonstrates improved performance while significantly reducing parameter count compared to prior models. Notably, similar performance gains were achieved using a simple linear token mixer, emphasizing the importance of preserving information from proximate time steps rather than the specific design of the token mixer itself. This novel modification to Mamba's input layer represents a departure from conventional timestamp-based encoding approaches used in Transformers. By enhancing performance of Mamba in offline RL, characterized by memory efficiency and fast inference, this work opens new avenues for its broader application in future RL research.
- Abstract(参考訳): State Space Model (SSM) を用いたシーケンスモデリングは、様々なタスクにおいてTransformerよりもパフォーマンスが優れており、Decision Transformerとオフライン強化学習(RL)の強化版よりも優れた性能を期待できる。
しかし、最先端のSSMであるMambaに基づく決定モデルは、これらの強化された決定変換器よりも優れた性能を達成できなかった。
我々は、この制限は選択的走査フェーズにおける情報損失から生じると仮定する。
そこで本稿では,DMM(Decision MetaMamba)を提案する。
このミキサーは、状態、アクション、戻り値を含むオフラインRL入力のマルチモーダルな性質を明示的に説明する。
DMMは,従来のモデルに比べてパラメータ数を大幅に削減しながら,性能の向上を示す。
特に、同様の性能向上は単純な線形トークンミキサーを用いて達成され、トークンミキサー自体の特定の設計よりも、近接時間ステップから情報を保存することの重要性を強調した。
この新しいMambaの入力層の変更は、Transformersで使用される従来のタイムスタンプベースのエンコーディングアプローチから逸脱したことを意味する。
メモリ効率と高速推論を特徴とするオフラインRLにおけるMambaの性能向上により、この研究は将来のRL研究に広く応用するための新たな道を開く。
関連論文リスト
- MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
従来の軽量モデルの研究は、主にCNNとTransformerベースの設計に重点を置いてきた。
効率と性能のバランスをとるMobileMambaフレームワークを提案する。
MobileMambaはTop-1で83.6%を達成し、既存の最先端の手法を上回っている。
論文 参考訳(メタデータ) (2024-11-24T18:01:05Z) - ReMamba: Equip Mamba with Effective Long-Sequence Modeling [50.530839868893786]
本研究では,長い文脈の理解能力を高めるReMambaを提案する。
ReMambaは2段階のプロセスで選択的圧縮と適応のテクニックを取り入れている。
論文 参考訳(メタデータ) (2024-08-28T02:47:27Z) - DeciMamba: Exploring the Length Extrapolation Potential of Mamba [89.07242846058023]
本研究では,マンバに特化して設計された文脈拡張手法であるDeciMambaを紹介する。
DeciMambaは、トレーニング中に見たものよりも25倍長く、余分な計算資源を使わずに、コンテキスト長を外挿できることを示す。
論文 参考訳(メタデータ) (2024-06-20T17:40:18Z) - Mamba as Decision Maker: Exploring Multi-scale Sequence Modeling in Offline Reinforcement Learning [16.23977055134524]
我々はMamba Decision Maker (MambaDM) という新しいアクション予測手法を提案する。
MambaDMは、マルチスケール依存関係の効率的なモデリングのため、シーケンスモデリングのパラダイムの有望な代替品として期待されている。
本稿では,RL領域におけるMambaDMのシーケンスモデリング機能について述べる。
論文 参考訳(メタデータ) (2024-06-04T06:49:18Z) - Mamba State-Space Models Are Lyapunov-Stable Learners [1.6385815610837167]
Mamba State-space Model (SSM) は、最近様々なタスクでTransformer Large Language Model (LLM) より優れていることが示されている。
我々は,Mambaのリカレントダイナミクスが小さな入力変化に対して堅牢であることを示す。
また、命令チューニングにより、Mambaモデルはこのギャップを81%に、Mamba-2モデルはこのギャップを132%に制限できることを示す。
論文 参考訳(メタデータ) (2024-05-31T21:46:23Z) - Decision Mamba: Reinforcement Learning via Hybrid Selective Sequence Modeling [13.253878928833688]
テキスト内強化学習のための決定マンバ・ヒブリッド(DM-H)を提案する。
DM-Hは、マンバモデルを介して長期記憶から高価値のサブゴールを生成する。
長期タスクにおけるDM-Hのオンラインテストは、トランスフォーマーベースのベースラインよりも28$times$speedである。
論文 参考訳(メタデータ) (2024-05-31T10:41:03Z) - Demystify Mamba in Vision: A Linear Attention Perspective [72.93213667713493]
Mambaは線形計算複雑性を持つ効率的な状態空間モデルである。
我々は,Mambaが線形アテンショントランスフォーマーと驚くほど類似していることを示す。
本稿では,これら2つの鍵設計の利点を線形注意に取り入れた,マンバ様線形注意(MLLA)モデルを提案する。
論文 参考訳(メタデータ) (2024-05-26T15:31:09Z) - Decision Mamba Architectures [1.4255659581428335]
決定マンバアーキテクチャは、様々なタスク領域でトランスフォーマーより優れていることが示されている。
決定マンバ(DM)と階層決定マンバ(HDM)の2つの新しい手法を紹介する。
我々は,ほとんどのタスクにおいて,TransformerモデルよりもMambaモデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2024-05-13T17:18:08Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
GPT-4のような技術基盤モデルの現状は、文脈内学習(ICL)において驚くほどよく機能する
この研究は、新たに提案された状態空間モデルであるMambaが同様のICL能力を持つという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-02-05T16:39:12Z) - MambaByte: Token-free Selective State Space Model [71.90159903595514]
マンババイト(英: MambaByte)は、マンバSSMがバイト配列で自己回帰的に訓練したトークンレス適応である。
MambaByteは、言語モデリングタスクにおいて、最先端のサブワードトランスフォーマーよりも優れています。
論文 参考訳(メタデータ) (2024-01-24T18:53:53Z) - Mamba: Linear-Time Sequence Modeling with Selective State Spaces [31.985243136674146]
ファンデーションモデルは、ほぼ普遍的にTransformerアーキテクチャとコアアテンションモジュールに基づいている。
このようなモデルの重大な弱点は、コンテンツベースの推論を実行できないことである。
我々はこれらの選択的なSSMを、注意やブロック(Mamba)を使わずに、単純化されたエンドツーエンドニューラルネットワークアーキテクチャに統合する(Mamba)。
一般的なシーケンスモデルバックボーンとして、Mambaは言語、オーディオ、ゲノミクスといったいくつかのモードで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-12-01T18:01:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。