Integrating Multi-Modal Input Token Mixer Into Mamba-Based Decision Models: Decision MetaMamba
- URL: http://arxiv.org/abs/2408.10517v2
- Date: Fri, 22 Nov 2024 01:42:14 GMT
- Title: Integrating Multi-Modal Input Token Mixer Into Mamba-Based Decision Models: Decision MetaMamba
- Authors: Wall Kim,
- Abstract summary: Sequence modeling with State Space models (SSMs) has demonstrated performance surpassing that of Transformers in various tasks.
However, decision models based on Mamba, a state-of-the-art SSM, failed to achieve superior performance compared to enhanced Decision Transformers.
We propose the Decision MetaMamba (DMM), which augments Mamba with a token mixer in its input layer.
- Score: 0.0
- License:
- Abstract: Sequence modeling with State Space models (SSMs) has demonstrated performance surpassing that of Transformers in various tasks, raising expectations for their potential to outperform the Decision Transformer and its enhanced variants in offline reinforcement learning (RL). However, decision models based on Mamba, a state-of-the-art SSM, failed to achieve superior performance compared to these enhanced Decision Transformers. We hypothesize that this limitation arises from information loss during the selective scanning phase. To address this, we propose the Decision MetaMamba (DMM), which augments Mamba with a token mixer in its input layer. This mixer explicitly accounts for the multimodal nature of offline RL inputs, comprising state, action, and return-to-go. The DMM demonstrates improved performance while significantly reducing parameter count compared to prior models. Notably, similar performance gains were achieved using a simple linear token mixer, emphasizing the importance of preserving information from proximate time steps rather than the specific design of the token mixer itself. This novel modification to Mamba's input layer represents a departure from conventional timestamp-based encoding approaches used in Transformers. By enhancing performance of Mamba in offline RL, characterized by memory efficiency and fast inference, this work opens new avenues for its broader application in future RL research.
Related papers
- MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - ReMamba: Equip Mamba with Effective Long-Sequence Modeling [50.530839868893786]
We propose ReMamba, which enhances Mamba's ability to comprehend long contexts.
ReMamba incorporates selective compression and adaptation techniques within a two-stage re-forward process.
arXiv Detail & Related papers (2024-08-28T02:47:27Z) - DeciMamba: Exploring the Length Extrapolation Potential of Mamba [89.07242846058023]
We introduce DeciMamba, a context-extension method specifically designed for Mamba.
We show that DeciMamba can extrapolate context lengths 25x longer than the ones seen during training, and does so without utilizing additional computational resources.
arXiv Detail & Related papers (2024-06-20T17:40:18Z) - Mamba as Decision Maker: Exploring Multi-scale Sequence Modeling in Offline Reinforcement Learning [16.23977055134524]
We propose a novel action predictor sequence, named Mamba Decision Maker (MambaDM)
MambaDM is expected to be a promising alternative for sequence modeling paradigms, owing to its efficient modeling of multi-scale dependencies.
This paper delves into the sequence modeling capabilities of MambaDM in the RL domain, paving the way for future advancements.
arXiv Detail & Related papers (2024-06-04T06:49:18Z) - Mamba State-Space Models Are Lyapunov-Stable Learners [1.6385815610837167]
Mamba state-space models (SSMs) were recently shown to outperform Transformer large language models (LLMs) across various tasks.
We show that Mamba's recurrent dynamics are robust to small input changes.
We also show that instruction tuning allows Mamba models to narrow this gap to 81% and Mamba-2 models to skyrocket over this gap to 132%.
arXiv Detail & Related papers (2024-05-31T21:46:23Z) - Decision Mamba: Reinforcement Learning via Hybrid Selective Sequence Modeling [13.253878928833688]
We propose a Decision Mamba-Hybrid (DM-H) for in-context reinforcement learning.
DM-H generates high-value sub-goals from long-term memory through the Mamba model.
Online testing of DM-H in the long-term task is 28$times$ times faster than the transformer-based baselines.
arXiv Detail & Related papers (2024-05-31T10:41:03Z) - Demystify Mamba in Vision: A Linear Attention Perspective [72.93213667713493]
Mamba is an effective state space model with linear computation complexity.
We show that Mamba shares surprising similarities with linear attention Transformer.
We propose a Mamba-Like Linear Attention (MLLA) model by incorporating the merits of these two key designs into linear attention.
arXiv Detail & Related papers (2024-05-26T15:31:09Z) - Decision Mamba Architectures [1.4255659581428335]
Decision Mamba architecture has shown to outperform Transformers across various task domains.
We introduce two novel methods, Decision Mamba (DM) and Hierarchical Decision Mamba (HDM)
We demonstrate the superiority of Mamba models over their Transformer counterparts in a majority of tasks.
arXiv Detail & Related papers (2024-05-13T17:18:08Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
State of the art foundation models such as GPT-4 perform surprisingly well at in-context learning (ICL)
This work provides empirical evidence that Mamba, a newly proposed state space model, has similar ICL capabilities.
arXiv Detail & Related papers (2024-02-05T16:39:12Z) - MambaByte: Token-free Selective State Space Model [71.90159903595514]
MambaByte is a token-free adaptation of the Mamba SSM trained autoregressively on byte sequences.
We show MambaByte to be competitive with, and even to outperform, state-of-the-art subword Transformers on language modeling tasks.
arXiv Detail & Related papers (2024-01-24T18:53:53Z) - Mamba: Linear-Time Sequence Modeling with Selective State Spaces [31.985243136674146]
Foundation models are almost universally based on the Transformer architecture and its core attention module.
We identify that a key weakness of such models is their inability to perform content-based reasoning.
We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even blocks (Mamba)
As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics.
arXiv Detail & Related papers (2023-12-01T18:01:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.