MUSE: Mamba is Efficient Multi-scale Learner for Text-video Retrieval
- URL: http://arxiv.org/abs/2408.10575v1
- Date: Tue, 20 Aug 2024 06:30:37 GMT
- Title: MUSE: Mamba is Efficient Multi-scale Learner for Text-video Retrieval
- Authors: Haoran Tang, Meng Cao, Jinfa Huang, Ruyang Liu, Peng Jin, Ge Li, Xiaodan Liang,
- Abstract summary: We propose MUSE, a multi-scale mamba with linear computational complexity for efficient cross-resolution modeling.
Specifically, the multi-scale representations are generated by applying a feature pyramid on the last single-scale feature map.
We employ the Mamba structure as an efficient multi-scale learner to jointly learn scale-wise representations.
- Score: 73.77101139365912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-Video Retrieval (TVR) aims to align and associate relevant video content with corresponding natural language queries. Most existing TVR methods are based on large-scale pre-trained vision-language models (e.g., CLIP). However, due to the inherent plain structure of CLIP, few TVR methods explore the multi-scale representations which offer richer contextual information for a more thorough understanding. To this end, we propose MUSE, a multi-scale mamba with linear computational complexity for efficient cross-resolution modeling. Specifically, the multi-scale representations are generated by applying a feature pyramid on the last single-scale feature map. Then, we employ the Mamba structure as an efficient multi-scale learner to jointly learn scale-wise representations. Furthermore, we conduct comprehensive studies to investigate different model structures and designs. Extensive results on three popular benchmarks have validated the superiority of MUSE.
Related papers
- EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
We propose EmbedLLM, a framework designed to learn compact vector representations of Large Language Models.
We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness.
Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency.
arXiv Detail & Related papers (2024-10-03T05:43:24Z) - SAM4MLLM: Enhance Multi-Modal Large Language Model for Referring Expression Segmentation [37.45387861441091]
We introduce SAM4MLLM, an innovative approach which integrates the Segment Anything Model (SAM) with Multi-Modal Large Language Models (MLLMs)
Our method enables MLLMs to learn pixel-level location information without requiring excessive modifications to the existing model architecture or adding specialized tokens.
It combines detailed visual information with the powerful expressive capabilities of large language models in a unified language-based manner without additional computational overhead in learning.
arXiv Detail & Related papers (2024-09-01T12:09:33Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch.
Our studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process.
By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters.
arXiv Detail & Related papers (2024-07-28T06:10:47Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [60.17448025069594]
We investigate the potential of Large Language Models to enhance multimodal representation in multimodal item-to-item recommendations.
One feasible method is the transfer of Multimodal Large Language Models (MLLMs) for representation tasks.
We propose a novel training framework, NoteLLM-2, specifically designed for multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training [103.72844619581811]
We build performant Multimodal Large Language Models (MLLMs)
In particular, we study the importance of various architecture components and data choices.
We demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data.
arXiv Detail & Related papers (2024-03-14T17:51:32Z) - Multi-modal Semantic Understanding with Contrastive Cross-modal Feature
Alignment [11.897888221717245]
This paper proposes a novel CLIP-guided contrastive-learning-based architecture to perform multi-modal feature alignment.
Our model is simple to implement without using task-specific external knowledge, and thus can easily migrate to other multi-modal tasks.
arXiv Detail & Related papers (2024-03-11T01:07:36Z) - Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback [38.708690624594794]
Video and text multimodal alignment remains challenging, primarily due to the deficient volume and quality of multimodal instruction-tune data.
We present a novel alignment strategy that employs multimodal AI system to oversee itself called Reinforcement Learning from AI Feedback (RLAIF)
In specific, we propose context-aware reward modeling by providing detailed video descriptions as context during the generation of preference feedback.
arXiv Detail & Related papers (2024-02-06T06:27:40Z) - Macaw-LLM: Multi-Modal Language Modeling with Image, Audio, Video, and
Text Integration [50.94902442781148]
We propose a novel multi-modal large language model (LLM) that seamlessly integrates visual, audio, and textual information.
Macaw-LLM consists of three main components: a modality module for encoding multi-modal data, a cognitive module for harnessing pretrained LLMs, and an alignment module for harmonizing diverse representations.
We construct a large-scale multi-modal instruction dataset in terms of multi-turn dialogue, including 69K image instances and 50K video instances.
arXiv Detail & Related papers (2023-06-15T12:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.