Multi-modal Semantic Understanding with Contrastive Cross-modal Feature
Alignment
- URL: http://arxiv.org/abs/2403.06355v1
- Date: Mon, 11 Mar 2024 01:07:36 GMT
- Title: Multi-modal Semantic Understanding with Contrastive Cross-modal Feature
Alignment
- Authors: Ming Zhang, Ke Chang and Yunfang Wu
- Abstract summary: This paper proposes a novel CLIP-guided contrastive-learning-based architecture to perform multi-modal feature alignment.
Our model is simple to implement without using task-specific external knowledge, and thus can easily migrate to other multi-modal tasks.
- Score: 11.897888221717245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-modal semantic understanding requires integrating information from
different modalities to extract users' real intention behind words. Most
previous work applies a dual-encoder structure to separately encode image and
text, but fails to learn cross-modal feature alignment, making it hard to
achieve cross-modal deep information interaction. This paper proposes a novel
CLIP-guided contrastive-learning-based architecture to perform multi-modal
feature alignment, which projects the features derived from different
modalities into a unified deep space. On multi-modal sarcasm detection (MMSD)
and multi-modal sentiment analysis (MMSA) tasks, the experimental results show
that our proposed model significantly outperforms several baselines, and our
feature alignment strategy brings obvious performance gain over models with
different aggregating methods and models even enriched with knowledge. More
importantly, our model is simple to implement without using task-specific
external knowledge, and thus can easily migrate to other multi-modal tasks. Our
source codes are available at https://github.com/ChangKe123/CLFA.
Related papers
- Adapting Segment Anything Model to Multi-modal Salient Object Detection with Semantic Feature Fusion Guidance [15.435695491233982]
We propose a novel framework to explore and exploit the powerful feature representation and zero-shot generalization ability of the Segment Anything Model (SAM) for multi-modal salient object detection (SOD)
We develop underlineSAM with seunderlinemantic funderlineeature fuunderlinesion guidancunderlinee (Sammese)
In the image encoder, a multi-modal adapter is proposed to adapt the single-modal SAM to multi-modal information. Specifically, in the mask decoder, a semantic-geometric
arXiv Detail & Related papers (2024-08-27T13:47:31Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - Toward Robust Multimodal Learning using Multimodal Foundational Models [30.755818450393637]
We propose TRML, Toward Robust Multimodal Learning using Multimodal Foundational Models.
TRML employs generated virtual modalities to replace missing modalities.
We also design a semantic matching learning module to align semantic spaces generated and missing modalities.
arXiv Detail & Related papers (2024-01-20T04:46:43Z) - Generative Multimodal Models are In-Context Learners [60.50927925426832]
We introduce Emu2, a generative multimodal model with 37 billion parameters, trained on large-scale multimodal sequences.
Emu2 exhibits strong multimodal in-context learning abilities, even emerging to solve tasks that require on-the-fly reasoning.
arXiv Detail & Related papers (2023-12-20T18:59:58Z) - SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for
Multi-modal Large Language Models [86.478087039015]
We present a versatile multi-modal large language model (MLLM) with a joint mixing of model weights, tuning tasks, and visual embeddings.
Based on our proposed joint mixing, we propose an efficient strategy aiming to better capture fine-grained appearances of high-resolution images.
We hope our work may cast a light on the exploration of joint mixing in future MLLM research.
arXiv Detail & Related papers (2023-11-13T18:59:47Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Multimodal Contrastive Learning via Uni-Modal Coding and Cross-Modal
Prediction for Multimodal Sentiment Analysis [19.07020276666615]
We propose a novel framework named MultiModal Contrastive Learning (MMCL) for multimodal representation to capture intra- and inter-modality dynamics simultaneously.
We also design two contrastive learning tasks, instance- and sentiment-based contrastive learning, to promote the process of prediction and learn more interactive information related to sentiment.
arXiv Detail & Related papers (2022-10-26T08:24:15Z) - Unsupervised Multimodal Language Representations using Convolutional
Autoencoders [5.464072883537924]
We propose extracting unsupervised Multimodal Language representations that are universal and can be applied to different tasks.
We map the word-level aligned multimodal sequences to 2-D matrices and then use Convolutional Autoencoders to learn embeddings by combining multiple datasets.
It is also shown that our method is extremely lightweight and can be easily generalized to other tasks and unseen data with small performance drop and almost the same number of parameters.
arXiv Detail & Related papers (2021-10-06T18:28:07Z) - Learning Modality-Specific Representations with Self-Supervised
Multi-Task Learning for Multimodal Sentiment Analysis [11.368438990334397]
We develop a self-supervised learning strategy to acquire independent unimodal supervisions.
We conduct extensive experiments on three public multimodal baseline datasets.
Our method achieves comparable performance than human-annotated unimodal labels.
arXiv Detail & Related papers (2021-02-09T14:05:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.