論文の概要: Privacy-preserving Universal Adversarial Defense for Black-box Models
- arxiv url: http://arxiv.org/abs/2408.10647v1
- Date: Tue, 20 Aug 2024 08:40:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 14:34:27.206439
- Title: Privacy-preserving Universal Adversarial Defense for Black-box Models
- Title(参考訳): ブラックボックスモデルに対するプライバシー保護ユニバーサル・ディフェンス
- Authors: Qiao Li, Cong Wu, Jing Chen, Zijun Zhang, Kun He, Ruiying Du, Xinxin Wang, Qingchuang Zhao, Yang Liu,
- Abstract要約: 本稿では,対象モデルのパラメータやアーキテクチャへのアクセスを必要としない,汎用的なブラックボックス防御手法であるDUCDを紹介する。
このアプローチでは、データをクエリすることでターゲットモデルをクエリし、データのプライバシを保持しながら、ホワイトボックスサロゲートを生成します。
複数の画像分類データセットの実験では、DUCDは既存のブラックボックスディフェンスよりも優れており、ホワイトボックスディフェンスの精度と一致している。
- 参考スコア(独自算出の注目度): 20.968518031455503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs) are increasingly used in critical applications such as identity authentication and autonomous driving, where robustness against adversarial attacks is crucial. These attacks can exploit minor perturbations to cause significant prediction errors, making it essential to enhance the resilience of DNNs. Traditional defense methods often rely on access to detailed model information, which raises privacy concerns, as model owners may be reluctant to share such data. In contrast, existing black-box defense methods fail to offer a universal defense against various types of adversarial attacks. To address these challenges, we introduce DUCD, a universal black-box defense method that does not require access to the target model's parameters or architecture. Our approach involves distilling the target model by querying it with data, creating a white-box surrogate while preserving data privacy. We further enhance this surrogate model using a certified defense based on randomized smoothing and optimized noise selection, enabling robust defense against a broad range of adversarial attacks. Comparative evaluations between the certified defenses of the surrogate and target models demonstrate the effectiveness of our approach. Experiments on multiple image classification datasets show that DUCD not only outperforms existing black-box defenses but also matches the accuracy of white-box defenses, all while enhancing data privacy and reducing the success rate of membership inference attacks.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、識別認証や自律運転といった重要なアプリケーションにおいて、敵の攻撃に対する堅牢性が不可欠であるようになってきている。
これらの攻撃は、小さな摂動を利用して重大な予測エラーを引き起こす可能性があるため、DNNのレジリエンスを高めることが不可欠である。
従来の防衛手法は、しばしば詳細なモデル情報へのアクセスに依存しており、モデル所有者はそのようなデータを共有するのを嫌がる可能性があるため、プライバシー上の懸念を引き起こす。
対照的に、既存のブラックボックス防御手法は、様々な種類の敵攻撃に対して普遍的な防御を提供していない。
これらの課題に対処するために,ターゲットモデルのパラメータやアーキテクチャへのアクセスを必要としない汎用ブラックボックス防御手法であるDUCDを導入する。
このアプローチでは、データをクエリすることでターゲットモデルを蒸留し、データのプライバシを保持しながら、ホワイトボックスサロゲートを生成します。
さらに、ランダムな平滑化と最適化された雑音選択に基づく認証された防御を用いて、このサロゲートモデルを強化し、幅広い敵攻撃に対する堅牢な防御を可能にする。
提案手法の有効性を実証し,サロゲートとターゲットモデルの比較評価を行った。
複数の画像分類データセットの実験では、DUCDは既存のブラックボックスディフェンスを上回るだけでなく、ホワイトボックスディフェンスの精度も向上し、データのプライバシを高め、メンバーシップ推論攻撃の成功率を下げている。
関連論文リスト
- Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
ディープニューラルネットワークは、元の画像に近いサンプルを見つける敵の例に弱いが、モデルを誤分類させる可能性がある。
モデル中間層における隠れた特徴にランダムノイズを付加することにより,ブラックボックス攻撃に対する簡易かつ軽量な防御法を提案する。
本手法は,スコアベースと決定ベースの両方のブラックボックス攻撃に対するモデルのレジリエンスを効果的に向上させる。
論文 参考訳(メタデータ) (2023-10-01T03:53:23Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Certifiable Black-Box Attacks with Randomized Adversarial Examples: Breaking Defenses with Provable Confidence [34.35162562625252]
ブラックボックスの敵攻撃は、機械学習モデルを妥協する強力な可能性を示している。
証明可能な保証付きブラックボックス攻撃の新たなパラダイムについて検討する。
この新しいブラックボックス攻撃は、機械学習モデルの重大な脆弱性を露呈する。
論文 参考訳(メタデータ) (2023-04-10T01:12:09Z) - How to Robustify Black-Box ML Models? A Zeroth-Order Optimization
Perspective [74.47093382436823]
入力クエリと出力フィードバックだけでブラックボックスモデルを堅牢化する方法?
我々は,ブラックボックスモデルに適用可能な防御操作の一般的な概念を提案し,それを復号化スムーシング(DS)のレンズを通して設計する。
我々は,ZO-AE-DSが既存のベースラインよりも精度,堅牢性,クエリの複雑さを向上できることを実証的に示す。
論文 参考訳(メタデータ) (2022-03-27T03:23:32Z) - One Parameter Defense -- Defending against Data Inference Attacks via
Differential Privacy [26.000487178636927]
機械学習モデルは、メンバシップ推論やモデル反転攻撃のようなデータ推論攻撃に弱い。
既存の防衛方法は、メンバーシップ推論攻撃からのみ保護する。
両攻撃を時間効率で処理する差分プライベートディフェンス法を提案する。
論文 参考訳(メタデータ) (2022-03-13T06:06:24Z) - LTU Attacker for Membership Inference [23.266710407178078]
我々は,会員推定攻撃に対する予測モデルを守るという課題に対処する。
ユーティリティとプライバシの両方を、アタッカーと評価器を含む外部装置で評価する。
特定の条件下では、単純な攻撃戦略によって、LTU攻撃者でさえ、プライバシー損失の低い境界を達成できることを証明します。
論文 参考訳(メタデータ) (2022-02-04T18:06:21Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
本研究では,自己指導型高水準表現の堅牢性について,敵攻撃に対する防御に利用して検討する。
ASVspoof 2019データセットの実験結果は、Mockingjayによって抽出されたハイレベルな表現が、敵の例の転送可能性を妨げることを示した。
論文 参考訳(メタデータ) (2020-06-05T03:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。