Tensor tree learns hidden relational structures in data to construct generative models
- URL: http://arxiv.org/abs/2408.10669v2
- Date: Thu, 03 Apr 2025 03:56:46 GMT
- Title: Tensor tree learns hidden relational structures in data to construct generative models
- Authors: Kenji Harada, Tsuyoshi Okubo, Naoki Kawashima,
- Abstract summary: We propose a general method for constructing a generative model by expressing the target distribution function as the amplitude of the quantum wave function represented by a tensor tree.<n>We illustrate potential practical applications with four examples: (i) random patterns, (ii) QMNIST handwritten digits, (iii) Bayesian networks, and (iv) the pattern of stock price fluctuation pattern in S&P500.
- Score: 0.09558392439655014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Based on the tensor tree network with the Born machine framework, we propose a general method for constructing a generative model by expressing the target distribution function as the amplitude of the quantum wave function represented by a tensor tree. The key idea is dynamically optimizing the tree structure that minimizes the bond mutual information. The proposed method offers enhanced performance and uncovers hidden relational structures in the target data. We illustrate potential practical applications with four examples: (i) random patterns, (ii) QMNIST handwritten digits, (iii) Bayesian networks, and (iv) the pattern of stock price fluctuation pattern in S&P500. In (i) and (ii), the strongly correlated variables were concentrated near the center of the network; in (iii), the causality pattern was identified; and in (iv), a structure corresponding to the eleven sectors emerged.
Related papers
- Plastic tensor networks for interpretable generative modeling [0.0874967598360817]
A single-layer nonnegative adaptive tensor tree (NATT) that models a target probability distribution is proposed.
We consider the NATT scheme and a recently proposed Born machine adaptive tensor tree (BMATT) optimization scheme and demonstrate their effectiveness on a variety of generative modeling tasks.
arXiv Detail & Related papers (2025-04-09T09:23:11Z) - Learning Decision Trees as Amortized Structure Inference [59.65621207449269]
We propose a hybrid amortized structure inference approach to learn predictive decision tree ensembles given data.
We show that our approach, DT-GFN, outperforms state-of-the-art decision tree and deep learning methods on standard classification benchmarks.
arXiv Detail & Related papers (2025-03-10T07:05:07Z) - Compositional Structures in Neural Embedding and Interaction Decompositions [101.40245125955306]
We describe a basic correspondence between linear algebraic structures within vector embeddings in artificial neural networks.
We introduce a characterization of compositional structures in terms of "interaction decompositions"
We establish necessary and sufficient conditions for the presence of such structures within the representations of a model.
arXiv Detail & Related papers (2024-07-12T02:39:50Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Amortised Inference in Structured Generative Models with Explaining Away [16.92791301062903]
We extend the output of amortised variational inference to incorporate structured factors over multiple variables.
We show that appropriately parameterised factors can be combined efficiently with variational message passing in elaborate graphical structures.
We then fit the structured model to high-dimensional neural spiking time-series from the hippocampus of freely moving rodents.
arXiv Detail & Related papers (2022-09-12T12:52:15Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - Tensor Decompositions in Recursive Neural Networks for Tree-Structured
Data [12.069862650316262]
We introduce two new aggregation functions to encode structural knowledge from tree-structured data.
We test them on two tree classification tasks, showing the advantage of proposed models when tree outdegree increases.
arXiv Detail & Related papers (2020-06-18T15:40:32Z) - Generalising Recursive Neural Models by Tensor Decomposition [12.069862650316262]
We introduce a general approach to model aggregation of structural context leveraging a tensor-based formulation.
We show how the exponential growth in the size of the parameter space can be controlled through an approximation based on the Tucker decomposition.
By this means, we can effectively regulate the trade-off between expressivity of the encoding, controlled by the hidden size, computational complexity and model generalisation.
arXiv Detail & Related papers (2020-06-17T17:28:19Z) - Struct-MMSB: Mixed Membership Stochastic Blockmodels with Interpretable
Structured Priors [13.712395104755783]
Mixed membership blockmodel (MMSB) is a popular framework for community detection and network generation.
We present a flexible MMSB model, textitStruct-MMSB, that uses a recently developed statistical relational learning model, hinge-loss Markov random fields (HL-MRFs)
Our model is capable of learning latent characteristics in real-world networks via meaningful latent variables encoded as a complex combination of observed features and membership distributions.
arXiv Detail & Related papers (2020-02-21T19:32:32Z) - Semi-Structured Distributional Regression -- Extending Structured
Additive Models by Arbitrary Deep Neural Networks and Data Modalities [0.0]
We propose a general framework to combine structured regression models and deep neural networks into a unifying network architecture.
We demonstrate the framework's efficacy in numerical experiments and illustrate its special merits in benchmarks and real-world applications.
arXiv Detail & Related papers (2020-02-13T21:01:26Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.