Semi-Structured Distributional Regression -- Extending Structured
Additive Models by Arbitrary Deep Neural Networks and Data Modalities
- URL: http://arxiv.org/abs/2002.05777v5
- Date: Sat, 9 Jul 2022 09:28:35 GMT
- Title: Semi-Structured Distributional Regression -- Extending Structured
Additive Models by Arbitrary Deep Neural Networks and Data Modalities
- Authors: David R\"ugamer, Chris Kolb, Nadja Klein
- Abstract summary: We propose a general framework to combine structured regression models and deep neural networks into a unifying network architecture.
We demonstrate the framework's efficacy in numerical experiments and illustrate its special merits in benchmarks and real-world applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combining additive models and neural networks allows to broaden the scope of
statistical regression and extend deep learning-based approaches by
interpretable structured additive predictors at the same time. Existing
attempts uniting the two modeling approaches are, however, limited to very
specific combinations and, more importantly, involve an identifiability issue.
As a consequence, interpretability and stable estimation are typically lost. We
propose a general framework to combine structured regression models and deep
neural networks into a unifying network architecture. To overcome the inherent
identifiability issues between different model parts, we construct an
orthogonalization cell that projects the deep neural network into the
orthogonal complement of the statistical model predictor. This enables proper
estimation of structured model parts and thereby interpretability. We
demonstrate the framework's efficacy in numerical experiments and illustrate
its special merits in benchmarks and real-world applications.
Related papers
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - Back to Bayesics: Uncovering Human Mobility Distributions and Anomalies with an Integrated Statistical and Neural Framework [14.899157568336731]
DeepBayesic is a novel framework that integrates Bayesian principles with deep neural networks to model the underlying distributions.
We evaluate our approach on several mobility datasets, demonstrating significant improvements over state-of-the-art anomaly detection methods.
arXiv Detail & Related papers (2024-10-01T19:02:06Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - A New PHO-rmula for Improved Performance of Semi-Structured Networks [0.0]
We show that techniques to properly identify the contributions of the different model components in SSNs lead to suboptimal network estimation.
We propose a non-invasive post-hocization (PHO) that guarantees identifiability of model components and provides better estimation and prediction quality.
Our theoretical findings are supported by numerical experiments, a benchmark comparison as well as a real-world application to COVID-19 infections.
arXiv Detail & Related papers (2023-06-01T10:23:28Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
We show that the generalization abilities of model-based networks for sparse recovery outperform those of regular ReLU networks.
We derive practical design rules that allow to construct model-based networks with guaranteed high generalization.
arXiv Detail & Related papers (2023-04-19T16:39:44Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Semi-Structured Deep Piecewise Exponential Models [2.7728956081909346]
We propose a versatile framework for survival analysis that combines advanced concepts from statistics with deep learning.
A proof of concept is provided by using the framework to predict Alzheimer's disease progression.
arXiv Detail & Related papers (2020-11-11T14:41:19Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Amortized Bayesian Inference for Models of Cognition [0.1529342790344802]
Recent advances in simulation-based inference using specialized neural network architectures circumvent many previous problems of approximate Bayesian computation.
We provide a general introduction to amortized Bayesian parameter estimation and model comparison.
arXiv Detail & Related papers (2020-05-08T08:12:15Z) - Struct-MMSB: Mixed Membership Stochastic Blockmodels with Interpretable
Structured Priors [13.712395104755783]
Mixed membership blockmodel (MMSB) is a popular framework for community detection and network generation.
We present a flexible MMSB model, textitStruct-MMSB, that uses a recently developed statistical relational learning model, hinge-loss Markov random fields (HL-MRFs)
Our model is capable of learning latent characteristics in real-world networks via meaningful latent variables encoded as a complex combination of observed features and membership distributions.
arXiv Detail & Related papers (2020-02-21T19:32:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.