TDS-CLIP: Temporal Difference Side Network for Image-to-Video Transfer Learning
- URL: http://arxiv.org/abs/2408.10688v1
- Date: Tue, 20 Aug 2024 09:40:08 GMT
- Title: TDS-CLIP: Temporal Difference Side Network for Image-to-Video Transfer Learning
- Authors: Bin Wang, Wenqian Wang,
- Abstract summary: We propose a memory-efficient Temporal Difference Side Network ( TDS-CLIP) to balance knowledge transferring and temporal modeling.
Specifically, we introduce a Temporal Difference Adapter (TD-Adapter), which can effectively capture local temporal differences in motion features.
We also designed a Side Motion Enhancement Adapter (SME-Adapter) to guide the proposed side network in efficiently learning the rich motion information in videos.
- Score: 6.329214318116305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, large-scale pre-trained vision-language models (e.g., CLIP), have garnered significant attention thanks to their powerful representative capabilities. This inspires researchers in transferring the knowledge from these large pre-trained models to other task-specific models, e.g., Video Action Recognition (VAR) models, via particularly leveraging side networks to enhance the efficiency of parameter-efficient fine-tuning (PEFT). However, current transferring approaches in VAR tend to directly transfer the frozen knowledge from large pre-trained models to action recognition networks with minimal cost, instead of exploiting the temporal modeling capabilities of the action recognition models themselves. Therefore, in this paper, we propose a memory-efficient Temporal Difference Side Network (TDS-CLIP) to balance knowledge transferring and temporal modeling, avoiding backpropagation in frozen parameter models. Specifically, we introduce a Temporal Difference Adapter (TD-Adapter), which can effectively capture local temporal differences in motion features to strengthen the model's global temporal modeling capabilities. Furthermore, we designed a Side Motion Enhancement Adapter (SME-Adapter) to guide the proposed side network in efficiently learning the rich motion information in videos, thereby improving the side network's ability to capture and learn motion information. Extensive experiments are conducted on three benchmark datasets, including Something-Something V1\&V2, and Kinetics-400. Experimental results demonstrate that our approach achieves competitive performance.
Related papers
- Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Distilling Knowledge from CNN-Transformer Models for Enhanced Human
Action Recognition [1.8722948221596285]
The research aims to enhance the performance and efficiency of smaller student models by transferring knowledge from larger teacher models.
The proposed method employs a Transformer vision network as the student model, while a convolutional network serves as the teacher model.
The Vision Transformer (ViT) architecture is introduced as a robust framework for capturing global dependencies in images.
arXiv Detail & Related papers (2023-11-02T14:57:58Z) - Streaming Anchor Loss: Augmenting Supervision with Temporal Significance [5.7654216719335105]
Streaming neural network models for fast frame-wise responses to various speech and sensory signals are widely adopted on resource-constrained platforms.
We propose a new loss, Streaming Anchor Loss (SAL), to better utilize the given learning capacity by encouraging the model to learn more from essential frames.
arXiv Detail & Related papers (2023-10-09T17:28:35Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models.
Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels.
We present an insightful physics-inspired approach named PED to address these challenges.
arXiv Detail & Related papers (2023-08-29T07:15:57Z) - From Actions to Events: A Transfer Learning Approach Using Improved Deep
Belief Networks [1.0554048699217669]
This paper proposes a novel approach to map the knowledge from action recognition to event recognition using an energy-based model.
Such a model can process all frames simultaneously, carrying spatial and temporal information through the learning process.
arXiv Detail & Related papers (2022-11-30T14:47:10Z) - Parameter-Efficient Image-to-Video Transfer Learning [66.82811235484607]
Large pre-trained models for various downstream tasks of interest have recently emerged with promising performance.
Due to the ever-growing model size, the standard full fine-tuning based task adaptation strategy becomes costly in terms of model training and storage.
We propose a new Spatio-Adapter for parameter-efficient fine-tuning per video task.
arXiv Detail & Related papers (2022-06-27T18:02:29Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - Long-Short Temporal Contrastive Learning of Video Transformers [62.71874976426988]
Self-supervised pretraining of video transformers on video-only datasets can lead to action recognition results on par or better than those obtained with supervised pretraining on large-scale image datasets.
Our approach, named Long-Short Temporal Contrastive Learning, enables video transformers to learn an effective clip-level representation by predicting temporal context captured from a longer temporal extent.
arXiv Detail & Related papers (2021-06-17T02:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.