Distilling Knowledge from CNN-Transformer Models for Enhanced Human
Action Recognition
- URL: http://arxiv.org/abs/2311.01283v1
- Date: Thu, 2 Nov 2023 14:57:58 GMT
- Title: Distilling Knowledge from CNN-Transformer Models for Enhanced Human
Action Recognition
- Authors: Hamid Ahmadabadi, Omid Nejati Manzari, Ahmad Ayatollahi
- Abstract summary: The research aims to enhance the performance and efficiency of smaller student models by transferring knowledge from larger teacher models.
The proposed method employs a Transformer vision network as the student model, while a convolutional network serves as the teacher model.
The Vision Transformer (ViT) architecture is introduced as a robust framework for capturing global dependencies in images.
- Score: 1.8722948221596285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a study on improving human action recognition through the
utilization of knowledge distillation, and the combination of CNN and ViT
models. The research aims to enhance the performance and efficiency of smaller
student models by transferring knowledge from larger teacher models. The
proposed method employs a Transformer vision network as the student model,
while a convolutional network serves as the teacher model. The teacher model
extracts local image features, whereas the student model focuses on global
features using an attention mechanism. The Vision Transformer (ViT)
architecture is introduced as a robust framework for capturing global
dependencies in images. Additionally, advanced variants of ViT, namely PVT,
Convit, MVIT, Swin Transformer, and Twins, are discussed, highlighting their
contributions to computer vision tasks. The ConvNeXt model is introduced as a
teacher model, known for its efficiency and effectiveness in computer vision.
The paper presents performance results for human action recognition on the
Stanford 40 dataset, comparing the accuracy and mAP of student models trained
with and without knowledge distillation. The findings illustrate that the
suggested approach significantly improves the accuracy and mAP when compared to
training networks under regular settings. These findings emphasize the
potential of combining local and global features in action recognition tasks.
Related papers
- TDS-CLIP: Temporal Difference Side Network for Image-to-Video Transfer Learning [6.329214318116305]
We propose a memory-efficient Temporal Difference Side Network ( TDS-CLIP) to balance knowledge transferring and temporal modeling.
Specifically, we introduce a Temporal Difference Adapter (TD-Adapter), which can effectively capture local temporal differences in motion features.
We also designed a Side Motion Enhancement Adapter (SME-Adapter) to guide the proposed side network in efficiently learning the rich motion information in videos.
arXiv Detail & Related papers (2024-08-20T09:40:08Z) - Promoting CNNs with Cross-Architecture Knowledge Distillation for Efficient Monocular Depth Estimation [4.242540533823568]
Transformer models are usually computationally-expensive, and their effectiveness in light-weight models are limited compared to convolutions.
We propose a cross-architecture knowledge distillation method for MDE, dubbed DisDepth, to enhance efficient CNN models with the supervision of state-of-the-art transformer models.
Our method achieves significant improvements on various efficient backbones, showcasing its potential for efficient monocular depth estimation.
arXiv Detail & Related papers (2024-04-25T07:55:47Z) - TSCM: A Teacher-Student Model for Vision Place Recognition Using Cross-Metric Knowledge Distillation [6.856317526681759]
Visual place recognition plays a pivotal role in autonomous exploration and navigation of mobile robots.
Existing methods overcome this by exploiting powerful yet large networks.
We propose a high-performance teacher and lightweight student distillation framework called TSCM.
arXiv Detail & Related papers (2024-04-02T02:29:41Z) - Heterogeneous Generative Knowledge Distillation with Masked Image
Modeling [33.95780732124864]
Masked image modeling (MIM) methods achieve great success in various visual tasks but remain largely unexplored in knowledge distillation for heterogeneous deep models.
We develop the first Heterogeneous Generative Knowledge Distillation (H-GKD) based on MIM, which can efficiently transfer knowledge from large Transformer models to small CNN-based models in a generative self-supervised fashion.
Our method is a simple yet effective learning paradigm to learn the visual representation and distribution of data from heterogeneous teacher models.
arXiv Detail & Related papers (2023-09-18T08:30:55Z) - Out of Distribution Performance of State of Art Vision Model [0.0]
ViT's self-attention mechanism, according to the claim, makes it more robust than CNN.
We investigate the performance of 58 state-of-the-art computer vision models in a unified training setup.
arXiv Detail & Related papers (2023-01-25T18:14:49Z) - Prototype-guided Cross-task Knowledge Distillation for Large-scale
Models [103.04711721343278]
Cross-task knowledge distillation helps to train a small student model to obtain a competitive performance.
We propose a Prototype-guided Cross-task Knowledge Distillation (ProC-KD) approach to transfer the intrinsic local-level object knowledge of a large-scale teacher network to various task scenarios.
arXiv Detail & Related papers (2022-12-26T15:00:42Z) - Distilling Knowledge from Self-Supervised Teacher by Embedding Graph
Alignment [52.704331909850026]
We formulate a new knowledge distillation framework to transfer the knowledge from self-supervised pre-trained models to any other student network.
Inspired by the spirit of instance discrimination in self-supervised learning, we model the instance-instance relations by a graph formulation in the feature embedding space.
Our distillation scheme can be flexibly applied to transfer the self-supervised knowledge to enhance representation learning on various student networks.
arXiv Detail & Related papers (2022-11-23T19:27:48Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - Masked World Models for Visual Control [90.13638482124567]
We introduce a visual model-based RL framework that decouples visual representation learning and dynamics learning.
We demonstrate that our approach achieves state-of-the-art performance on a variety of visual robotic tasks.
arXiv Detail & Related papers (2022-06-28T18:42:27Z) - Efficient Self-supervised Vision Transformers for Representation
Learning [86.57557009109411]
We show that multi-stage architectures with sparse self-attentions can significantly reduce modeling complexity.
We propose a new pre-training task of region matching which allows the model to capture fine-grained region dependencies.
Our results show that combining the two techniques, EsViT achieves 81.3% top-1 on the ImageNet linear probe evaluation.
arXiv Detail & Related papers (2021-06-17T19:57:33Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
Knowledge distillation involves extracting "dark knowledge" from a teacher network to guide the learning of a student network.
We show that the seemingly different self-supervision task can serve as a simple yet powerful solution.
By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student.
arXiv Detail & Related papers (2020-06-12T12:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.