論文の概要: Unconditional Truthfulness: Learning Conditional Dependency for Uncertainty Quantification of Large Language Models
- arxiv url: http://arxiv.org/abs/2408.10692v1
- Date: Tue, 20 Aug 2024 09:42:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 14:14:58.115664
- Title: Unconditional Truthfulness: Learning Conditional Dependency for Uncertainty Quantification of Large Language Models
- Title(参考訳): 非条件真理性:大規模言語モデルの不確実性定量化のための条件依存の学習
- Authors: Artem Vazhentsev, Ekaterina Fadeeva, Rui Xing, Alexander Panchenko, Preslav Nakov, Timothy Baldwin, Maxim Panov, Artem Shelmanov,
- Abstract要約: 対象変数が条件と非条件生成信頼度のギャップである回帰モデルを訓練する。
この学習条件依存モデルを用いて、前のステップの不確実性に基づいて、現在の生成ステップの不確かさを変調する。
- 参考スコア(独自算出の注目度): 96.43562963756975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty quantification (UQ) is a perspective approach to detecting Large Language Model (LLM) hallucinations and low quality output. In this work, we address one of the challenges of UQ in generation tasks that arises from the conditional dependency between the generation steps of an LLM. We propose to learn this dependency from data. We train a regression model, which target variable is the gap between the conditional and the unconditional generation confidence. During LLM inference, we use this learned conditional dependency model to modulate the uncertainty of the current generation step based on the uncertainty of the previous step. Our experimental evaluation on nine datasets and three LLMs shows that the proposed method is highly effective for uncertainty quantification, achieving substantial improvements over rivaling approaches.
- Abstract(参考訳): 不確実性定量化(英: Uncertainty Quantification、UQ)は、Large Language Model(LLM)の幻覚と低品質な出力を検出するための視点アプローチである。
本研究では,LLMの生成ステップ間の条件依存性から生じるタスク生成におけるUQの課題の1つに対処する。
我々はこの依存関係をデータから学ぶことを提案する。
対象変数が条件と非条件生成信頼度のギャップである回帰モデルを訓練する。
LLM推論において、この学習条件依存モデルを用いて、前のステップの不確実性に基づいて、現在の生成ステップの不確かさを変調する。
9つのデータセットと3つのLCMに関する実験により,提案手法は不確実な定量化に極めて有効であり,競合するアプローチよりも大幅に改善されていることを示す。
関連論文リスト
- Zero-shot Model-based Reinforcement Learning using Large Language Models [12.930241182192988]
本稿では,マルコフ決定過程の動的状態を予測するために,事前学習した大規模言語モデルをどのように活用することができるかを検討する。
本稿では,モデルに基づく政策評価とデータ強化型オフ政治強化学習という2つの強化学習環境における概念実証の応用について述べる。
論文 参考訳(メタデータ) (2024-10-15T15:46:53Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Language Model Cascades: Token-level uncertainty and beyond [65.38515344964647]
言語モデル(LM)の最近の進歩により、複雑なNLPタスクの品質が大幅に向上した。
Cascadingは、より好ましいコスト品質のトレードオフを達成するためのシンプルな戦略を提供する。
トークンレベルの不確実性を学習後遅延ルールに組み込むことで,単純な集約戦略を著しく上回ることを示す。
論文 参考訳(メタデータ) (2024-04-15T21:02:48Z) - SPUQ: Perturbation-Based Uncertainty Quantification for Large Language
Models [9.817185255633758]
大規模言語モデル(LLM)がますます普及し、顕著なテキスト生成機能を提供している。
プレッシャーの課題は、自信を持って間違った予測をする傾向にある。
本稿では,浮腫とてんかんの両不確実性に対処するために,新しいUQ法を提案する。
その結果,モデルキャリブレーションは大幅に改善し,予測誤差(ECE)は平均50%減少した。
論文 参考訳(メタデータ) (2024-03-04T21:55:22Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
大規模言語モデルはしばしば「ハロシン化」の課題に直面している
本研究では,不確実性に応答してモデルが出力を拡張あるいは拒否することを可能にする,不確実性を考慮したコンテキスト内学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T12:06:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。